Leonardo Patimo IWYM September 20-22, 2023

Coxeter Groups

Question 1. Describe the Coxeter complex of $I_2(m)$ for any $m \ge 2$ and for $m = \infty$.

Question 2. Describe the Coxeter complex of \tilde{B}_2 , whose Coxeter graph is

$$\bullet \stackrel{4}{-} \bullet \stackrel{4}{-} \bullet$$

Strongly suggested tip: play around with https://www.jgibson.id.au/lievis/affine_weyl/.

Question 3. Let $W = S_4$, the symmetric group on $\{1, 2, 3, 4\}$. Then W has the structure of a Coxeter group with $S = \{s_1, s_2, s_3\}$ where s_i denotes the transposition (i, i + 1). Show that $w = s_1 s_2 s_1 s_3 s_2 s_1$ is a reduced expression. Show that for any $s \in S$ we have $\ell(ws) = \ell(w) - 1$ and find a simple reflection that can be removed from the reduced expression of $\ell(w)$ to give a reduced expression for ws.

Question 4. Let $\{s, t, u\}$ be the simple reflections inside the Coxeter group of type A_3 . Show that the subgroup generated by (su) and t is a Coxeter group of type $B_2 = I_2(4)$, with simple reflections $\{su, t\}$, by checking the braid relation.

Leonardo Patimo IWYM September 20-22, 2023

Kazhdan-Lusztig polynomials and Kazhdan-Lusztig basis

Question 5. Let W be a dihedral Coxeter group, i.e. |S| = 2. Show that all the KL polynomials are trivial, i.e. $h_{x,y}(v) = v^{\ell(y) - \ell(x)}$.

Question 6. Let W the Weyl group of type A_3 with simple reflection s, t, u. Compute the Kazhdan–Lusztig basis element \underline{H}_{tsut} .

Question 7. Show that $\underline{H}_{x}\underline{H}_{s} = (v + v^{-1})\underline{H}_{x}$ if $x \in W$ and $s \in S$ with xs < x.

Question 8. Let w be the longest element of a finite Coxeter group. Show that for any $x \in w$ we have $h_{x,w}(v) = v^{\ell(w)-\ell(x)}$.

Leonardo Patimo IWYM September 20-22, 2023

Combinatorics of KL polynomials

Question 9. Describe the poset structure (for example by drawing the Hasse diagram) of the interval [t, tsut] in type A_3 .