Lie Groups SoSe 2020 — Ubungsblatt 2 Ausgabe 18.05.20, Abgabe 26.05.19

Solutions are due on Tuesday 26th May at 23:59. Please send it by email at

leonardo.patimo@math.uni-freiburg.de

Group work is encouraged!

Aufgabe 2.1: Consider \mathbb{R} as a group with the addition. Show that the representation

$$\rho : \mathbb{R} \to GL_2(\mathbb{R})$$
$$x \mapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$

is not completely reducible.

Hint: Show that $\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rangle \subset \mathbb{R}^2$ is the unique non-trivial subspace stable under ρ .

(4 Punkte)

Matrix groups

Aufgabe 2.2: Let $SO_2(\mathbb{R}) = O_2(\mathbb{R}) \cap SL_2(\mathbb{R}) = \{A \in Mat_2(\mathbb{R}) \mid AA^t = Id \text{ and } det(A) = 1\}$. Show that the map

$$S^{1} \to SO_{2}(\mathbb{R})$$
$$e^{i\theta} \mapsto \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

is a group isomorphism.

(4 Punkte)

Aufgabe 2.3: Let I_p denote the identity matrix in $Mat_p(\mathbb{R})$ and, for $p, q \in \mathbb{N}$, let

$$I_{p,q} = \begin{pmatrix} I_p & 0\\ 0 & -I_q \end{pmatrix} \in Mat_n(\mathbb{R})$$

where n = p + q.

The indefinite orthogonal group $O_{p,q}(\mathbb{R})$ is the set of transformation of \mathbb{R}^n preserving the bilinear form defined by $I_{p,q}$, i.e.

$$O_{p,q}(\mathbb{R}) := \{ A \in Mat_n(\mathbb{R}) \mid A^t I_{p,q} A = I_{p,q} \}.$$

- 1. Show that $O_{p,q}(\mathbb{R})$ is a closed subgroup of $GL_n(\mathbb{R})$.
- 2. Bonus: Show that if $p, q \ge 1$ then $O_{p,q}(\mathbb{R})$ is not compact.

Hint for (2): Enough to show it for $O_{1,1}(\mathbb{R})$ (Why?). Notice that $\begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix} \in O(1,1)$, so it cannot be bounded!

(4+2 Punkte)

Bonus-Aufgabe 2.4: The goal of the exercise is to compute $T_{Id}SL_n(\mathbb{R})$.

1. Show that for $A \in GL_n(\mathbb{C})$ and $B \in Mat_n(\mathbb{C})$ we have

$$e^{ABA^{-1}} = Ae^BA^{-1}$$

2. Show that for every $B \in Mat_n(\mathbb{C})$ we have

 $e^{Tr(B)} = \det(e^B)$

Hint: First show it for B upper triangular, then use (1) for the general case.

3. Let $\mathfrak{sl}_n(\mathbb{R}) := \{B \in Mat_n(\mathbb{R}) \mid Tr(B) = 0\}$. Show that $\mathfrak{sl}_n(\mathbb{R}) = T_{Id}SL_n(\mathbb{R})$. Hint: Use (2) to show that inclusion $\mathfrak{sl}_n(\mathbb{R}) \subset T_{Id}SL_n(\mathbb{R})$. The space $T_{Id}SL_n(\mathbb{R})$ cannot be larger than $\mathfrak{sl}_n(\mathbb{R})$ because...

(6 Punkte)