Lie Groups SoSe 2020 — Ubungsblatt 5 Ausgabe 15.06.20, Abgabe 30.06.19

Solutions are due on Tuesday 30th June at 23:59. Please send it by email at

leonardo.patimo@math.uni-freiburg.de

Aufgabe 5.1: Write down the Haar measure of the Lie group \mathbb{C}^* . Hint: Combine the case of the groups \mathbb{R}^* and S^1 .

(4 Punkte)

Aufgabe 5.2: Let V be an irreducible real representation of a group G. Show that the G-invariant scalar product on V, if exists, is unique up to multiplication by a positive real number.

Hint: Show that $Bil(V) \cong \operatorname{Hom}_k(V, V^*)$, where Bil(V) is the space of bilinear forms on V, and V^* is the dual space on V. Moreover, G-invariant forms correspond to homomorphisms of G-representations. (Recall that V^* can be seen as a G-representation via $g \cdot \phi(v) = \phi(g^{-1}v)$ for any $g \in G$, $\phi \in V^*$ and $v \in V$).

(4 Punkte)

Aufgabe 5.3: Let G be a finite group.

• Show that the Haar measure on G is

$$\int_G f(g) dg = \frac{1}{|G|} \sum_{g \in G} f(g)$$

• Apply Peter-Weyl theorem on G to deduce

$$|G| = \sum_{V \text{ irred}} (\dim V)^2$$

where the sum runs over all the isomorphism classes of irreducible representations of G.

(4 Punkte)

Bonus-Aufgabe 5.4: The goal of this exercise is to deduce from Peter-Weyl theorem that every compact Lie group G has a faithful representation, i.e. an injective representation $\rho: G \to GL(V)$ (and therefore G is isomorphic to a closed subgroup of $GL_n(\mathbb{R})$.

- Using Peter-Weyl theorem, show that for every $g \in G^{\circ}$ (where G° is the connected component of identity of G) there exists a finite dimensional representation ρ_1 such that $\rho_1(g) \neq Id$.
- Deduce that ker ρ_1 is a subgroup of G which such that dim Ker $(\rho_1) < \dim G$.

Hint: If dim $\operatorname{Ker}(\rho_1) = \dim G$, $\operatorname{Ker}(\rho_1)$ would contain a neighborhood of $e \in G$.

• Continuing as in the previous point, show that we can find N representations $\rho_1, \rho_2 \dots, \rho_N$ such that

 $0 = \dim \operatorname{Ker}(\rho_1 \oplus \rho_2 \oplus \ldots \oplus \rho_N) < \dim \operatorname{Ker}(\rho_1 \oplus \rho_2 \oplus \ldots \oplus \rho_{N-1}) < \ldots \dim \operatorname{Ker}(\rho_1)$

• Deduce that $\operatorname{Ker}(\rho_1 \oplus \rho_2 \oplus \ldots \oplus \rho_N) = \{g_1, \ldots, g_M\}$, so we can find $\rho_1, \rho_2, \ldots, \rho_{N+M}$ such that $\operatorname{Ker}(\rho_1 \oplus \rho_2 \oplus \ldots \oplus \rho_N) = \{e\}$.

(8 Punkte)