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1 Haar measure

Remark 1.1 (Motivation from the representation theory of finite groups). If G is a finite
group, there is the averaging operator

E:{f:G—HR}—HR{ (1)
LA
geG
Let V be a finite dimensional representation of G. If (—, —) is scalar product on V', we

obtain a left G-invariant scalar product on V by setting

=3
)= Stlgw)) = iy 3l

Using b one can define the orthogonal of a subrepresentation and thus prove Maschke’s
theorem. The goal of this section is to define an analogous averaging operator for compact
Lie groups.



Let X be a topological space. Let f: X — R a continuous function. The support of
fis supp(f) = {z € X|f(x) # 0}. We denote by C,(X,R) the vector space of continuous
real functions on X with compact support.

Definition 1.2. A Radon measure on X is a linear function A : Ci(X,R) — R such that
if f(z) >0 for all x € X we have A(f) > 0.

Let now G be a topological group. For g € G we denote by L, : G — G the left
multiplication by g.

Definition 1.3. A Haar measure H on G is a non-trivial left G-invariant Radon measure
A. In formulas, this means that for any f € C/(X,R) and g € G we have H(f) = H(foLy).

Example 1.4. e If G is a finite group, the averaging operator ¥ from (1) is a Haar
measure.

e On the group (R,+), the Lebesgue measure is a Haar measure. In fact, for any
f€C(X,R) and y € R we have [, f(x)dx = [, f(z +y)dz.

e On the group S' a Haar measure is given by f f027r f(e)df.

e On the group (R, ), a Haar measure is given by f fooo @dm. In fact, for y > 0
we have - - J -
/ flay) . :/ f(2)ydz :/ fz) .
0 T 0 z Y 0 <

Theorem 1.5 (General existence and uniqueness of the Haar measure). Let G be a locally
compact Hausdorff topological group. Then, there exists a Haar measure on G. Moreover,
the Haar measure is unique up to multiplication by a positive real number.

A general proof for topological groups see [1, Satz 4.3.8]. Here we prove instead a
weaker version, which is enough for our purposes.

Definition 1.6. We call a continuous positive density on G a linear function F' : C/(G,R)
R if for any chart ¢ : U — G there exists gy € C(U,Rxg) such that for any h € C(¢(U),R)
we have F(h) = [,;qu(ho ¢), where [;; denotes the Lebesgue measure on U.

Let ¢ : V' — G be another chart and let h € C(¢p(U) N¢(V)). Then by the change of
coordinates under integral (see [3, Satz 8.1.9]) we have

F(h)=/UqU~<ho¢>>=/V<qUo¢—1ow>-<how>|detd<¢—1ow>| 2)

from which it follows that gy = (g 0o ¢! o)) det d(¢~! 0 1))| on the intersection.

Remark 1.7. If g € G and F is a positive continuous density and so is Fy(f) := F(foRy).
In fact, if ¢ is a chart, also R4 0% is a chart, and we have for h € C/(U,R) that

Fy(ho(Ryop) ™) =F(hoy ™ o(Ry) L oRy) =F(hoy™) = /Uqwh.

Similarly, also F'(f) = F(f oinv) is a positive continuous density because if ¢ is a chart
also inv o) is a chart.



Theorem 1.8 (Existence and uniqueness of continuous Haar density on Lie groups). Let
G be a Lie group. Then, there exists a continuous positive density on G which is a Haar
measure on G. Moreover, such a continuous density is unique up to multiplication by a
positive real number.

Proof. We first prove the uniqueness. Let p and v be two Haar measures which are
continuous positive densities.

Fix a chart ¢ : U — G. Then for any h € Ci(¢(U),R) we have pu(h) = [;; qu(ho ¢) and
v(h) = [i; @ (h o ¢) for some gy, q, € C(U,Rsg). Let r = Z—: € C(U,Rx).

For p,q € U, we can find g € G such that g(¢(p)) = ¢(q) and V), V;, C U neighborhoods
of p and ¢ such that g(¢(V,)) = ¢(Vy). Let rg =ro0¢™ Lo Ly-10¢ € C(Vy,Rsp).

For h € Ci(¢(Vy),R) we have by left-invariance of p

u(h)Zu(hoLg)=/ qu<hoLgo<z>>=/ gur(ho Lyo )

Vo Vo

and by left-invariance of v we have

u(h)Z/V qu<ho¢>=/v

rqy(ho¢) = /V qu(r o ¢—1 o¢)(ho o)
=v((rog™")h) = v((ro¢~' o Ly)(ho Ly))
= / qurg(ho Lgo ¢)

Vp

If 7(q) > rg(q) = r(p) we can find a neighborhood V, where r(q) > ry(¢q) + € for some
e > 0and h € C(p(Vy), R>p with v(h) > 0. We get a contradiction since

Oz/vql,(r—rg)(hoLgogb)>/ eqy(hoLgo¢)=cv(holLy) =cv(h)

p Vp

We prove now the existence of the Haar measure. The cotangent space (T)G) := (T.G)
is a vector space of dimension n = dim . There exists a non-zero element w, € A"T}G.
We can make w an invariant G-form by setting wy, = Lz—l we. Here by L1 : G = G
induces (Ly-1)s : T,G = T.G and on dual spaces it induces Lo TEG = T,G and also
Lo A"T2G = A"T,G.

We obtain a C*> k-form w, i.e. a section of the line bundle A"T*G. (This means that
locally on any chart ¢ the function u +— w,)) : U — A"R" = R is C*°, where wy,) is the
image of w, under the isomorphism A"R" = A"T;U = A"T;(u)G.

The form w is called a volume form. The form w is left invariant, in fact we have

((Lg)*w)h = L;wgh = LZthlg—u,ue — L;‘;*lwe = wy,.

Then we can use w to obtain a Haar measure. From a volume form one gets a pos-
itive continuous density: on a chart ¢ : U — G this has the density function qy(u) =
|p*we(uy(e1, - - en)|, where U C R™ and (eq,...,e,) is the standard basis of R". We see
that since w does not vanish, the function ¢y is positive. To check that this defines a
positive continuous density we check that if x is in the intersection of two charts, i.e.
z € @(U)NyY(V) we have

¢ waler, ... en)| = [( T 0d) P wyy(e1, . .. en)| = |det(dy-1(4) (v 09)) [ wa(en, . . €n)]

so they glue together to a positive continuous density as discussed in (2). O



We conclude this section by describing the Haar measure on GL,(R).

Proposition 1.9. The Haar measure on GL,(R) is
f(A)
————dA
1= | faaaEd
where we identify GL,(R) with an open subset of R,

Proof. Let {e; ;}i j<n be the standard basis of M, (R). We first show

_ deig ANdeiag N ... Ndepp
a det(A)n

wA

is a left invariant volume form on GL,(R).

Let B € GL,(R). Recall that the linear map Lp : M,(R) — M, (R) has determinant
det(Lp) = det(B)" (in fact, Lp can be seen as the map (B, B, ..., B) on the columns of
Ma(R)).

For A, B € GL,(R) we have

. Beji ANBeisA...N\Be
(Lpw)alert, .. enn) =wpa(Bey, ..., Bepy) = — de‘ifBA)" -

B det(B)”eLl NeraN...Nepn
B det(B)™ det(A")

= WA(el,lu cee aen,n)

The formula for the Haar measure immediately follows. O

2 DMaschke’s theorem for compact groups

On compact groups we can choose the Haar measure so that the integral of the constant
function 1 is 1.

Corollary 2.1. Let G be a compact Lie group. Then there exists a unique Haar measure
fG on G such that fG 1 =1, where 1g is the constant function 1 on G.

Proof. This is clear, because 1 € C(G,R) = C(G,R) if G is compact. O
For g € G'let Ry : G — G be the right multiplication by g.

Corollary 2.2. Let G be a compact Lie group. Then the Haar measure is also right
wmovartant.

Proof. Let fG be a Haar measure. Fix h € G. Then >p : f — fG(f o Rp) is also a left
invariant Haar measure, since for all g € G we have

zh<foLg>=/G<foLgoRh>:/<foRhoLg>=zh<f>.

G

Moreover, we have X,(1) = [,10 Ry = [,1 = 1. It follows from the uniqueness in
Corollary 2.1 that [, = X, for all h € G, hence [, is right invariant (cf. Remark 1.7) [

Exercise 2.3. Show that if G is compact we have fo(g)dg = fG flg~Hdg for all f €
C(G,R).



As a first application, we show that every representation of a compact Lie group is
unitary.

Proposition 2.4. Let V be a finite dimensional real representation of a compact Lie
group G. Then there exists a G-invariant scalar product b on V', i.e the image of the
homomorphism p : G — GL(V) is included in O(V,b) := {A € GL(V) | b(Av, Aw) =
b(v,w)}.

Proof. Let (—,—) be any scalar product on V. We obtain a G-invariant scalar product by
setting b(v,w) = fG(gv, gw). The scalar product b is clearly bilinear. It is positive definite
since b(v,v) = [4(gv, gv) > 0 because the integral of a positive function is positive. It is left
invariant because b(hv, hw) = [,(ghv, ghw) = [,(gv, gw) since [, is right invariant. O

Remark 2.5. The same proof of Proposition 2.4 shows that if V' is a complex representa-
tion of G, then there exists a G-invariant hermitian product A on G. This shows that the

image of p: G — GL(V) lies in U(V, h) :={A € GL(V) | h(Av, Aw) = h(v,w)}.

Recall that a representation is said completely reducible if it is isomorphic to a direct
sum of irreducible representations.

Theorem 2.6 (Maschke’s theorem for compact groups). Every finite dimensional repre-
sentations of a compact Lie group is completely reducible.

Proof. Let V be a representation of a compact group G. We show by induction on dim V'
that V is completely reducible. The claim is clear if dimV = 1.

By Proposition 2.4, we find a left G-invariant scalar product b on V. If V is irreducible,
the claim is clear. Otherwise, there exists a G-stable subspace W C V. Let W+ := {v e
V|blv,w)=0VYwe W},

The subspace W is also G-stable. In fact, if ¢ € G and v € W, we have for all
w € W that b(gv,w) = b(v, g~ w) = 0, so also gv € W+,

Since b is a scalar product we have V = W @ W, This is a decomposition into smaller
representations. We can now easily conclude by induction. O

An indecomposable and completely reducible representation is by definition also irre-
ducible, so we have the following immediate consequence.

Corollary 2.7. A representation of a compact Lie group is indecomposable if and only if
1t 1s irreducible.

Remark 2.8. Because of Remark 2.5, both Theorem 2.6 and Corollary 2.7 hold for complex
representations. One just need to replace the G-invariant scalar product with a G-invariant
hermitian product in the proof.

We conclude this section by showing how one can reconstruct a completely reducible
complex representation using Schur’s lemma.

Lemma 2.9 (Schur’s lemma). Let V' and W be irreducible complex representations of a
group G. Then we have

0 ifVEW

Homg (V. W) = {Cld iV =W



Proof. Let f:V — W be a morphism. Then Ker f and Im f are both subrepresentations.
Since V and W are irreducible, if f £ 0 the only possibilities are Ker f = 0 and Im f = W,
which means that f is an isomorphism.

Assume now V = W. Then f is an endomorphism of V', so it has an eigenvalue A € C.
Also f — A1d is a morphism of representations, so we must have Ker(f — A1d) =V, from
which it follows that f = A1d. O

Corollary 2.10. Let V' be a completely reducible complex representation of a group G.

Then
V @ Sdimc Homg (S,V) ]

S irreducible

Proof. Since V is completely irreducible we can write V = @g i educible Sds. From
Schur’s lemma Lemma 2.9 we see that Homg(S,V) = Homg(S, S9) = dsC, so dg =
dimc Homg (S, V). O

We conclude this section with a remark on dual representations. Recall that if V'
is a representation of a group GG, we can construct a dual representation V* by setting
g-Av) =g tv) for all g € G, v €V and XA € V*. This is a representation since

(g-h-A) (W) =h- Mg~ "v) =Ah" g v) = gh- A(v).

If V is a complex representation of GG, we can also construct the complex conjugate
representation V. As a vector space, V is the same as V as an additive group but scalar
multiplication is defined by z-v = Zv for all z € C and v € V. The action of g on V
remains the same. This defines a linear map. In fact, we have

g-(z-v)=g-(2v) =%(g-v)

Remark 2.11. There is a canonical isomorphism of vector space (anil of representations)
between V' = Homg(V,C) and V* = Home(V, C) which sends f to f.

Proposition 2.12. Let G be a compact group and let V' be o finite dimensional represen-
tation of G. Then V =2 v if V is complex and V 2 V* if V is real.

Proof. Assume V is complex. We can endow V with a G-invariant hermitian product
(—,—). Then we can define an isomorphism ® : V. — V" by v — (v,—). Notice that
Mw) = (v,w) € V" since A(zw) = Z(v,w) = z-A(w) and ® is C-linear because ®(zv)(w) =
(zv,w) = z{v,w) = 2®(v)(w). Moreover, it is a morphism of representations because

®(gv)(w) = (gv,w) = (v, g7 w) = (g~ D(v))(w)

for any g € G and v,w € V. The same proof also works in the case of real representations.
O

Because of Remark 2.11 we also have an isomorphism V = V* defined by v + (—, v).

Similarly, we have an isomorphism V* = V', which sends A € V* to A € V with A =
(—, M), We can thus define a hermitian form on V* by setting (\, u) = (uf, \¥) = A(uf).

Assume now V is an irreducible representation of G. If Then, by Lemma 2.9 the
isomorphism V = Vs unique up to a scalar, so there is a unique G-invariant non-
degenerate sesquilinear' on V is unique up to a scalar. In particular, the G-invariant
hermitian product on V is unique up to a positive scalar.

!Sesquilinear means linear in the first component and antilinear in the second component



Let A € Endc(V). We can then consider the adjoint endomorphism Af with respect
to any G-invariant hermitian product, so that we have (A—, —) = (—, AT—). Since the
G-invariant hermitian product is unique up to a scalar, the adjoint map A" is well defined.

Lemma 2.13. For A,B € Endc(V), let
(A, B)gnav) = Tr(ABT).
Then (—,—) is an Hermitian product on Endc(V).

Proof. We need to show that (A, A) > 0if A # 0. We can choose an orthonormal basis of
V. Then A is the transpose conjugate of A and we have

TI'(AAT) = Zai,ja;i = 2 |am|2. O
¥

irj
3 Matrix coefficients

Definition 3.1. Let p : G — GL(V) be a finite dimensional representation a group G.
We say that a function ¢ : G — C is a matriz coefficient of V if ¢(g) = A(p(g)v) for some
veVand A e V*

Example 3.2. Let V = C" with standard basis e1,...,e, € V and dual basis e],..., €}, €
V*, so that G — GL(V) = GL,(C). Then the function p(g); ; which returns the (¢, j)-entry
of the matrix p(g) is a matrix coeflicient since p(g) = e} (p(9)e;)-

On the vector space of all the functions Set(G, C) there is a left action given by g- f =
fo(g~!) and a right action given by f-g = f o (-g). The matrix coefficients belong to
Set(G,C) and can be characterized by the following Lemma.

Lemma 3.3. Let ¢ : G — C be a function. Then c is a matriz coefficient if and only if
span(co (-h) | h € G) is finite dimensional.

Proof. Assume that ¢(g) = A(p(g)v)) is a matrix coefficient of p : G — GL(V). Let
v1,...,U, be a basis of V' and let v],...,v;, be the dual basis of V*. For h € G we can
write

for (p(h)v); € C. Then

n n

co (-h)(9) = Alp(gh)v) = Alp(9)p(h)v) = Ap(9) D (p(R)v)ju;) = D (p(R)0);A(p(9)v))-

j=1 j=1

This means that the span of all the c o (-g) is included in the vector space generated by
A(p(g)vj), for 1 < j < n.

In the other direction, assume that V' := span{co (-h) | h € G) is finite dimensional.
Then V is a representation of G where the action is defined by p(g)(co(-h) = co(-h)o(-g) =
co (-gh). Let A € V* defined by A(f) = f(1). Then we have

Alp(g)c) = A(co (-g9)) = co (-9)(1) = c(g),

and so ¢ is a matrix coefficient for V. ]



Remark 3.4. A similar proof shows that ¢ is a matrix coefficient if and only if span{co(g-) |
g € G) is finite dimensional.

If the group G is topological, then every matrix coefficient of a continuous representa-
tion is also continuous. So matrix coefficients of (continuous) representations are a subset
of C(G,C) C Set(G,C). We denote this set by M(G) The same argument as before show
that a continuous function ¢ : G — C is a matrix coeflicient if and only if it spans with its
right (or left) translations a finite dimensional vector space.

Lemma 3.5. The matriz coefficients M(G) of G form a vector space.

Proof. It is clear that if ¢ is a matrix coefficient and z € C, then zc is also a matrix
coefficient. Assume that c¢(g) = AM(g-v) and /(g) = u(g-w) withv e V., we W, A e V*
and p € W*.

Consider the representation VAW of G. Let (A, u) € (VOW)* defined by (A, u)(x,y) =
M)+ u(y) forall z € V and y € W. Then (¢c+ )(g) = (A, 1)(g - (v,w)) is also a matrix
coefficient. O

Proposition 3.6. Let G be a compact Lie group. Let cy(g) = A(g-v) and cw(g) = p(g-w)
be two matrix coefficients, withv € V, we W, A€ V* and u € W* where V and W are
two irreducible complexr representations of G.

1. If VZW, then cy and cy are orthogonal in L*(G), i.e. we have fG cyew = 0.

2. If V=W then
(v, 0) (A )

<CV7CW> = dlmV

Remark 3.7. Before we start the proof, we recall how to compute the trace of a rank 1
map. Let A :V — V be a linear endomorphism of rank 1 with its image is spanned by

v. We can choose as basis of V the set {v,wy,...,w,} with {w;} a basis of v* and the
coefficient of v in Av is <é}“{)§>, so we also get Tr(A) = %”1’;;).

Proof. Recall from Proposition 2.12 that W = W™ 22 (W*). Let v,w be as above and let
P :W* — V defined by

P(6) = /G B(gw)(gv)dg (3)

for any ¢ € W*. (Here to compute the integral on V we choose a basis a V and simply
compute the integral of the coefficients.) The map P is C-linear: for z € C we have

P(:+0) = | Zolgul(gv)dg = = | Ggullgvidg = 2P(6)
G G
Moreover, P is a morphism of representations: for any h € H we have
Pi-0) = [ S Tgwilavids = | Sgwingoids = ([ slgwliavids ) = - P(o)
G G G

If VW = W* then P =0 by Lemma 2.9. Let cy(g) = Agv) and ¢ (v) = p(gw)
be matrix coefficients with v € V, A € V*, w € W and pu € W*. Then we have

fev.ew) = [ eviaowaidg = ( [ idgui(goids) = APG) <o



This shows the first part.

Assume now V = W. Consider the isomorphism @ : V =5 V* defined by v — (v, —) >
(—,v). The composition Po (@ is endomorphism of V', and thus Po@ = t1d for some t € C
by Lemma 2.9. To find t we compute the trace of P o (). We have

POQ(U)=/G<gw’U>(gv)dg=/S(u,gwﬂgv)dg:/GMg(U)dg

where My (u) := (u, gw)(gv). Then M, is a C-linear endomorphism of V' of rank 1 and we
have Tr(M,) = (gv, gw) = (v, w). We get

Tr(PoQ) = /GTr(Mg)dg = /G<v,w>dg = (v, w).

It follows that P o Q = % and

v, W f v, w
(cv,ew) = /GCV(Q)CW(Q)dg = AP()) = M(PoQ)(@Q'p) = < ,diril/\‘(/u) = 7dir>rf/l\/’u>'

O

Corollary 3.8. Let M(p) C M(G) be the vector space generated by all the matriz coeffi-
cients of a representation p : G — GL(V'). We have

B M) = M(@G).

pr irred.

~

Proof. The inclusions M(pr) € M(G) induce a map ¢ : @ M(pr) — M(G). This
is surjective since every matrix coefficient is a sum of matrix coefficients for irreducible
representation. Moreover, ¢ is injective. In fact, if Y, ¢, =0, with ¢, € M(pr), then

<Z CL,ZCL> = Z<CL,CL> =0.
L L

L

Therefore (cr,cr) = 0 for all L, meaning that all the matrix coefficients ¢y, are trivial. [

There is another natural way to describe the vector space M(p) and their hermitian
form.

Proposition 3.9. Let M(p) C M(G) be the vector space generated by all the matriz
coefficients of a representation p : G — GL(V'). If p is irreducible, we have an isomorphism

M :End(V) = M(p)
A (calg) =Tr(p(g9)A))

and Vdim'V M is an isometry.

Proof. Recall that End(V) =2 V* ® V, where A ® v correspond to the rank 1 linear map
w +— A(w)v. The map (\,v) — (g — A(p(g)v) is bilinear, so it extends to a surjective
linear map End(V') — M(p).
By linearity, it is enough to check that M(A)(g) = dim(V') Tr(p(g)A) if A is of rank 1.
So we assume A(w) = A(w)v for some A € V* and v € V' \ {0}. Since the image of p(g)A
is spanned by gv, we have
(g(A(gv)), gv) _ (A(gv),v)

Tr(p(g)A) = Qg (o.0) = Agv).




Let now B a rank 1 endomorphism of the form B = u(—)w, with w € V and p € V*.
Then its adjoint is BT = (—, w)uf. In fact, we have

(Bot,va) = p(v1)(w, va) = (w,va) (vi, pf) = (o1, (w, va) ) = (v1, Bovg).

So, if A and B are of rank 1 as above, we have

(ABlo,v)  {(v,w) A, v)
<AvB>End(V) = TI'(ABT) = <’U,U> = <’U,U> = <an><)\7ﬂ>
It follows that +/dim VM is an isometry and in particular an isomorphism. O

Remark 3.10. The isomorphism M is also an isomorphism of G x G°P representations.
In fact, both on End(V) and on M(p) we have a left and a right G-action and for any
g,h € G we have

M (p(h1)Ap(h2))(g) = Tr(p(g)p(h1)Ap(h2)) = Tr(p(heghi)A) = M(A)(haghi).

4 Compact operators and the spectral theorem*

In this section we discuss the spectral theorem for compact operators. This theorem will be
applied to prove Peter-Weyl theorem for compact (Lie) groups. However, the arguments
are not geometric nor group theoretic but rather belong to the theory of Hilbert spaces in
functional analysis.

Let ‘H be a Hilbert space, that is a real (or complex) vector space with a scalar (or
hermitian) product (—, —) which makes it a complete topological space.

Example 4.1. If G is a compact Lie group, we consider the space of square integrable
functions L2(G) :={f : G — C| [5|f(g9)]* < oo}, where [, is the Haar measure. This is
a Hilbert space with respect to the hermitian product is (f1, fo) = [ f1(g9) f2(g)dg. On an
open set U C R™ every function f € L?(G) can be approximated with C>°-functions with
compact support [4, Satz 2.6.1]. In particular, the space C*°(G) C L?(G) is dense.

However, for our purposes, is enough to simply define L?(G) as the completion of the
space C(G) with respect to the metric (—, —) as above.

Definition 4.2. We say that a linear map T : H — H is self-adjoint if (Tv,w) = (v, Tw)
for all v,w € H.

The norm of a linear map T is defined as ||T'|| := sup{||T'(v)|| | v € H and ||v| = 1}. A
linear map is continuous if and only if it has finite norm.

Definition 4.3. We say that T' is compact if for any bounded sequence (v;) in H, the
sequence (T'v;) has a converging subsequence. Notice that a compact operator has finite
norm.

Lemma 4.4. Let H # 0 be a Hilbert space and let T : H — H be a compact and self-adjoint
operator. Then one between ||T|| and —||T|| is an eigenvalue of T

Proof. We have ||T?|| < ||T||? since for any linear map T since [|[T%(v)| < ||T|||T(v)] <
| T|1||v]|. Since T is self-adjoint, we also have ||T2|| > ||T||?. In fact, for any v € H of norm
1. We have ||T(v)||* = (Tv, Tv) = (v, T?(v)) < ||v|||T?(v)||. Tt follows that | T?|| = ||T||*.

Let now v, be a sequence of vectors of norm 1 such that lim ||T?v,|| = ||T?||. Since
T is compact, up to replacing with a subsequence, we can assume that the sequences T,
and T?v,, converge.

10



Since || T?v,|| < |T|||Tvnll, we have ||T|| = 0, in which case T' = 0 and the statement

is clear, or ||T'|| > lim ||Tv,| > ”HTTQHH = ||T||, and so lim ||Tv,|| = ||T|.

Consider the sequence a,, := |[(T? — ||T||)vy]|. Since T is self-adjoint, we have
an = (vn, (T = 2| TIPT + | T )on) = 17?01 = 2| T2 Ton® + | T]*

and lim,, oo a, = 0.

Let w = lim7T?v,. Then we obtain also lim ||T'||?>v, = w, and since we can assume
IT|| # 0, also v, converges to v := - Then we have T%y = lim T?v,, = lim ||T?||v, =
| T||?v. Tt follows that

(T =TT+ T (v) =0,
so either Tv = —||T||v or Tv' = ||T||v" for v' = (T + ||T||)(v). O

For a linear map T : ‘H — H, we denote by H, the eigenspace associated to the
eigenvalue A € C. The eigenspaces are in direct sum, but in general we only have an
inclusion @ Hy C H.

Lemma 4.5. If T is self-adjoint, then the eigenspaces of T are orthogonal to each other.

Proof. Let v € Hy and w € H,, with p # X. Then A(v,w) = (Tv,w) = (v,Tw) = p(v, w),
from which it follows (v, w) = 0. O

Let H be a Hilbert space, and let V; C H, for ¢ € I, be orthogonal subspaces. We write
@, Vi for the closure of the vector space @),;.; Vi. Recall that a subspace is dense if and
only if its orthogonal is trivial.

Theorem 4.6 (Spectral theorem for compact operators). Let H be a Hilbert space and

let T : H — H be a compact and self-adjoint operator. Then H = @,ccHa and all the
eigenspaces Hy for X # 0 are finite dimensional.

Proof. Assume that the direct sum is not dense, so it has a non-trivial orthogonal W. Then
T restricts to a compact operator on W. In fact, if w € W, we have (Tw,v) = (w,Tv) =
Mw,v) =0 for all v € H). But Lemma 4.4, shows that 7" has an eigenvector in W, which
gives a contradiction since (v, v) > 0.

Assume that H, is infinite dimensional for A £ 0. Then we can find a sequence of
vectors v, of norm 1, for example an orthonormal basis, which does not converge, such
that also Tv, = Av, does not converge. O

5 Convolutions on compact Lie groups

Let G be a compact Lie group with Haar measure fG. On C(G) we can consider several
different norms.

T /G F@ Il = /G F@E 1l = sup £(9).

geG

For any f € C(G) we have |[fll1 < [[fll2 < [[fllc. In fact, |flx = [oIfl = (If],1) <
Ifll2 - |11]] = [|f]l2, while the second inequality is trivial. In particular, we have C(G) C

L™(G) C L*(G) c LYG).

11



Definition 5.1. If ¢ € C(G) and f € L?(G) we define the convolution

Ty(£)(g) = (6 + F)lg) == /G o(gh~1)F(h)dh.

Remark 5.2. Using the change of variable h + h~!g (which we can because the Haar
measure is right invariant and inv-invariant), we also get

(6 F)(g) = /G o(h) £ (™ g)dh.

The goal of this section is to show that convolution with a continuous function gives a
compact operator on L?(G). We start by proving a version of the Heine-Cantor theorem
for compact Lie groups.

Proposition 5.3. Let G be a compact Lie group and let f € C(G). Then for any € there
exists a neighborhood U of the unity e € G such that for any g € G and u € U we have

1f(g) — flug)| <e.

Proof. Let 1) : U — G be a local chart around e € G where U is an open set in RIm&
containing 0 and let B(r) be the image under 1 of the open ball around 0 € U of radius r.
Fix € > 0. For any g € G by continuity there is d; > 0 such that for any u € Bs, we

have |f(g) — f(ug)| < 5. Then U ¢ B(%g)g is a open cover of G and by compactness it

admits a finite subcover Ule B(%ﬁ)gi. Let ¢ be the minimum among the dy,. Since the

multiplication is continuous, we can find 6 > 0 such that B(d) - B(6) C By C B(dy,) for
any 4.

Let now g € G and u € Bs. We have g € B(%)gi for some i. Then also ug € B(dy,)g
because ugg; ' € B(6)B(5) C B(d,,). We have

[6(ug) — 9(9)| < [6(ug) — 6(s)| + I6(g") — Sl9) < 5 + 5 == 0

We are also going to need the Arzeld—Ascoli theorem, which we recall.

Theorem 5.4 (Arzela—Ascoli). Let X be a compact topological space and let B C C(X) a
bounded and equicontinuous set, i.e. for any v € X and € > 0 there exists a neighborhood
U of x such that |f(x) — f(y)| < € for ally € U and f € B. Then every sequence in B
has a uniformly convergent subsequence.

Proof. Fix € > 0. For any z there is a neighborhood U, of x such that |f(x) — f(y)| < ¢
for all y € U, and f € B. There exists finitely many 21, ...,x, such that Uy,,...,U,,
cover X.

Since B is bounded, there exists M € Z~q such that —Me < f(z) < Me for all x € X
and f € B.

Let o : {1,2,...,7} = {-M,—M+1,...,M —1, M} be an arbitrary function. It there
exists such a function, let f, € B such that o(i)e < fo(x;) < (0(i) + 1)e for all i.

We claim that for any f € B there exists o such that ||f — f,]co < 3¢. In fact, we can
choose o such that o(i)e < f(x;) < (0(i) + 1)e (so f, exists!). For any x € X we have
x € Uy, for some ¢ and

[f (@) = fo(0)] < |f(2) = f(@i)| + |f (i) = fo i) + [fo(2i) — fo(z)| < 3e.

Let now f, be a sequence in B. For any m > 0 we can find a function o, as before
such that there are infinitely many functions f,, in the ball B(f,,,,37™). So we can find
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subsequences ( }Ll)) C (fn)in B(fs,,37h), (ff)) C (fT(Ll)) in B(f,,,37%) and so on. Finally
choose fn, € (fr(ll)), fns € (fr(?)) and so on.
The sequence f,, is a Cauchy sequence and it is therefore uniformly convergent. [

Proposition 5.5. Let ¢ € C(G) and consider the linear operator Ty : L*(G) — L?*(G)
defined by Ty(f) = ¢ f. Then Ty is a compact operator and the image of Ty is contained
in C(G).

Proof. The function ¢ is uniformly continuous and by Proposition 5.3, for any € > 0 we
can find a neighborhood U of the unity e € G such that |¢(g) — ¢(ug)| < € for any g € G
and v € U. For any f € L?(G) and g € G and u € U we have

[t a) = TS (ug) = | [ (6ah™") = otugh™) F0yan
< [ 10(6h™) = d(ugh |- [ < el < <lfle ()
Notice that this implies that T} f is continuous, and so it is in L*(G).
To show that Ty is compact, we need to show that every succession in B := {Ty(f) |

f € L*(G),||fll2 < 1} has a converging subsequence. This follows from the Arzela-Ascoli
theorem after we show that B is bounded and equicontinuous. It is bounded because

1T (F)ll2 < 1T6(f)lloc = sup
geG

/ d>(gh‘1)f(h)dh’
G
< sup||¢||oo/ |f(M)]dh = l|llcoll fIl1 < [[Bllocll fll2- (5)
geG G
It is equicontinuous because by (4) we have |Tyf(g) — Ty f(ug)| < €| fl]2 < € for any
f € B. We have then equicontinuity by taking the neighborhood Ug of g € G. O
We need a final ingredient to apply the spectral theorem: self-adjointness.

Proposition 5.6. Assume that ¢(g~') = ¢(g) for all g € G. Then Ty : L*(G) — L*(G)
15 self-adjoint.

Proof. Let f1, fo € L*(G). Then, by Fubini’s theorem [4, Satz 1.7.16], we have

(Toh, f2) = /G ( /G <Z>(gh‘1)f1(h)dh> Falg)dg = /G /G o(gh™) (k) Falg)dgdh

1 Tofa) = /G f1(9) < /G ¢<gh—1>f2<h)dh>dg= /G /G £1(9)6(hg~ V) Fa(RYdgdh

and the equality (T f1, f2) = (f1, Ty f2) follows by swapping the role of g and h. O

6 Peter—Weyl theorem

We can now prove the first part of Peter—Weyl theorem

Theorem 6.1 (Peter-Weyl theorem - First version). Let G be a compact Lie group. Then
the matriz coefficients are dense in C(G) with respect to the norm || — ||oo.
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Proof. Let f € C(G) be a continuous function on G. Since G is compact, by Proposition 5.3
there exists a neighborhood U of e € G such that for any ¢ € G and u € U we have
[f(u=tg) = flg)| <e.

Let now 0 # ¢ € C(UNU,Rx). Let ¢(g) := 1(g9) + (g™ ). Then also ¢ € (U N
U~1,R>p). Up to rescaling we can assume Jo ¢ = 1. Notice that we have ¢(g) = é(g™h)
for all g € G. Therefore, by Proposition 5.6, the operator T} is self-adjoint on L*(G), and
we have

Ty f(9) — f(9)] =

/ ¢>(h)f(hlg)—d>(h)f(g)dh‘ < [ st - siglan <
G G

for all g € G. Let L?(G)y be the eigenspaces of Ty. Since Ty is compact and self-adjoint,
we have

L*(G) = @ALQ(G),\,

so for any ¢’ there exists p € @ L*(G)\ approximating f with ||f — p|l2 < ’. We choose
g/ = —5—. We have by (5) that

6lloo *
1Tsf = Toplloo = [T6(f = P)lloo < [lloollf —pll2 <.

So it follows that || f — Typllec < 2e.
Moreover, we have Typ € @Aio L?(@)y. In particular, it is included in a finite direct
sum of finite dimensional vector spaces.

Claim 6.2. If X # 0, every element of L?(G)y, for X # 0, consists of a matrix coefficients.

Proof of the claim. Let f € L*(G),. For g, € G we have
Ty(f o (-9)(x)) = /G o(xh™) f(hg)dh = /G b(agh™) F(R)dh = (Tyf)(gz) = A(f o (-9))(x).

since [, is right invariant. Since L*(G)y is finite dimensional, the statement follows from
Lemma 3.3. u

It follows that Typ is a is a matrix coefficient. We have thus successfully approximated
any function f in C(G) with a a matrix coefficient. O

Since the continuous function are dense in L? (see for example [4, Satz 2.6.1]) we have
the following consequence.

Corollary 6.3. Let G be a compact Lie group. Then the matriz coefficients are dense in
L?(G) with respect to the norm || — ||2.

7 Fourier theory of compact group

We prove now a second version of the Peter-Weyl theorem, which usually also referred to
as non-abelian Fourier analysis, since it is a natural generalization of the Fourier series (see
Example 8.4).
Recall that if p: G — GL(V) is a representation of G we denote by M(p) the vector
space of matrix coefficients of p and and by M(G) the vector space of all matrix coefficients.
Then we have a surjective morphism

G: € Ende(L) - M(G)

L irred.
A € Endc(L) — vVdim L ca
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We have already shown in Proposition 3.9, that F is injective and it is surjective since every
matrix coefficient can be written as sum of matrix coefficients for irreducible representations
(cf. Lemma 3.5). So F is an isomorphism (of G x G°P-representations, cf. Remark 3.10)
Moreover, it is an isometry by Proposition 3.6 if we endow each Endc (L) with the scalar
product (A, B) = dim(L) Tr(ABT).

Let f € C(G) be a continuous function. Then on any representation V of G, f induces
a linear map fy : V — V defined by fy (v) = Jo f(g7Hgudg 2

We can give a second version of the Peter—-Weyl theorem, also known as the Fourier
series expansion for compact groups.

Theorem 7.1. The morphism G extends to an isomorphism of Hilbert spaces

G: @9\ Endc(L) — L*(G)
L irred.

and the inverse F := G~ sends f € L*(G) to the tuple of endomorphism v/dim L fL :
L—1L).

Proof. We have an isometry, so it is an isomorphism of pre-Hilbert spaces and it extends
to an isomorphism on the completions. By Corollary 6.3 we know that the completion of
M(G) is L*(G). Tt remains to compute the inverse of G.

Since M(G) is dense in C(G), we can assume f € M(G). In fact if f,, — f in L? then
ﬁv — fy since on compact spaces If = fullt < IIf = folle- By linearity we can assume
f(g) = ¢(gv) for some w € W and ¢ € W*, with V irreducible. We need to show that
F(f) is the endomorphism (vVdim V)~ t¢(—)w : W — W

Then, for an irreducible representation V and v € V' we have

fov = / $(g~ w)gudg = / (w, g¢*)gvdg = / (99#, w)gvdg = P((—,w)) = P o Q(w)
a a a
with P defined similarly as in (3) and Q(w) = (—,w). So

if V2 W

0
: v, ¢t v)w .
\/(WPOQ(w)zédiﬁli/w:féhiv it vV =mw.

F(H)(v) = VdimV fy(v) = {

The isomorphism F is also compatible with the convolution product when this is de-
fined. However, notice that in general L?(G) is not an algebra since the convolution of two
L2-functions may be not in L*(G).

We define a new operation on @ Endy(C), by setting A x B = \/dilﬁA o B for any
A, B € End(L)

Proposition 7.2. Let fi, fo € C(G) we have
F(fi* f2) = F(f2) * F(f1).

Proof. Let V be an irreducible representation and let v € V. We have

F(f1* f2)(v) = \/dimV/Gf1 * fg(g_l)gvdg = \/dimV/G/Gfl(g_lh_l)fg(h)gvdhdg.

2This notation is probably non-standard. Usually one defines fv(v) = fG f(g)gvdg.
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On the other hand we have
F(h) 7)) = 8 ( [ Ao e dg>
= m/ fa(h~ (/ filg™ Y (hgv dg) dh
m/ / filg (h)(h~'gv)dgdh
— VdmV /G /G f1(g™ ) fa()gudgdh.

where we have used that we can change h with ="' in the third equality and that fG is
invariant under left multiplication with A~ O

xv * xw = 0 if V and W are non-isomorphic and xv * xyv = G(G(xv * xw)
We have

o xo(g) = /G o (gh™ V)X (h)dh = /G Tr(p(gh™) Te(p(h))dh

XL * XL = XL

Corollary 7.3. Let G be a compact group and let {pr : G — U(dp,C)}rer be a set of
representatives of the isomorphism classes of the irreducible representations of G. Then

the matriz coefficients {Vdim L(pL)ij} rer  form an Hilbert basis of L*(G).

4,j<dim L

Proof. The morphism G is an isometry, and the matrix coefficients vdim L(pr,); ; are pre-
cisely the image of the elementary matrices Fj;;, which form an orthonormal basis of
End(CH™ L) 2 M, o, (C). O

8 Peter—Weyl for Class functions

The image of Id;, € Endc(L) under this isomorphism is vdim Ly (g) where x1(g) =
Tr(pr(g)). We call the trace of an irreducible representation a character of G.
If V and W are irreducible representations, by Proposition 7.2 we have

xv o xw = G(F(xv *xw)) = G(F(xv) » F(xw))

_g< Idv*IdW >_ 0 ifV%”W
SO \WdimV - dimW /) | X% iV =W

dim V'

Let now e, := (dim L)xz. Then we have ef, x e, = ey,.

Definition 8.1. A class function is a function f : G — C is a function that it is constant
of the conjugacy classes of G, i.e. such that for any g, h € G we have f(g 'hg) = f(h).

Clearly, the character functions xr, are class functions since the trace is invariant under
conjugation.

Proposition 8.2. Let G be a compact Lie group. Then the irreducible characters of G
generate o dense subspace of the space of continuous class functions on G.
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Proof. Let ¢ be a class function. Thanks to Theorem 6.1. we can find a matrix coefficient
¢ € M(G) such that ||¢ — ¢/l < €. Consider the function

c(x) ::/Gc(gxgl)dg.

This is a class function, since ¢(h~'zh) = [, c(gheh™ g~ ')dg = [, c(gzg™!)dg and we
have

o(x) — o(a)] = \ [ 6tgs7 - c(gmg*))dg‘ <6 — oo <.

Since G is compact, we can write ¢ = ) ¢; as a finite sum of matrix coefficients for
irreducible representations V; with ¢;(g) = Ai(gv;), for v € V; and A € V;*, we have

ci(z) =/ Ni(grgtvi)dg = \; (/ g:ﬂg_lvid9>
G G

Consider the morphism A% : V; — V; defined by v — Jo grg~tvdg. We have
Al (hv) = / grg thuvdg :/ hh~tgzg~thvdg = hA (v).
G G

So A is G-equivariant, and by Schur’s Lemma 2.9 we get A = r’ Idy, for some ¢ € C.
Computing the trace we obtain

¥ dim V; = Tr(AL) = /G Tr(plgrg g = [ (To(p()) = v, (o)

G

o) = Y = ) = 3 28% 0

and thus it is a linear combination of characters. O

SO

Corollary 8.3. For any class function f € L*(G) we have
f=> (fixe)xe,
L irred.
with the series converging with respect to || — ||2 and

IA3= D" (fixe)

L irred.

Proof. If f is a class function, then also fL is invariant under conjugation. In fact forv € L
we have

hth‘lv:/Gf(g_l)(hgh_lv)dgz/Gf(hg_ gvdg—/ flg™Hgvdg = fr(v)

So fL(lw) = hfL (v) and ?Z/\IS a morphism of representations. If L is irreducible, by Schur’s
Lemma 2.9 we must have f, = aldy for some a € C. To find a we compute as usual the
trace of fr. We have

/f ! Tr(pL(g) dg—/f )xz(g dg—/f 9Ixc(g™) = (fixw);

where we used that x7(¢~") = xr(g) since we can always find a basis on which p(g) is

unitary. So ﬁ; = <dfu>r‘1LL> Idy, and we conclude that

f=6(F(f) = \/(TZ Fixo)1dr) = {fxe)xe. O

L
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Example 8.4. If the group G is abelian, then every function is a class function and
moreover all the irreducible representations are of dimension one. So one gets that every
L?-function can be approximated with the characters of the irreducible representations
G — C*.

In the case of S we recover the classical results from Fourier analysis: if f € L2(S%),

e _ ino\ ino _ 1 0 —inf g\ pind
£ =34 e —%(/0 F()e ) |

ne’l
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