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1 Haar measure

Remark 1.1 (Motivation from the representation theory of �nite groups). If G is a �nite
group, there is the averaging operator

Σ : {f : G→ R} → R (1)

f 7→ 1

|G|
∑
g∈G

f(g)

Let V be a �nite dimensional representation of G. If 〈−,−〉 is scalar product on V , we
obtain a left G-invariant scalar product on V by setting

b(v, w) := Σ(〈gv, gw〉) =
1

|G|
∑
g∈G
〈gv, gw〉.

Using b one can de�ne the orthogonal of a subrepresentation and thus prove Maschke's
theorem. The goal of this section is to de�ne an analogous averaging operator for compact
Lie groups.
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Let X be a topological space. Let f : X → R a continuous function. The support of
f is supp(f) = {x ∈ X|f(x) 6= 0}. We denote by C!(X,R) the vector space of continuous
real functions on X with compact support.

De�nition 1.2. A Radon measure on X is a linear function Λ : C!(X,R) → R such that
if f(x) ≥ 0 for all x ∈ X we have Λ(f) ≥ 0.

Let now G be a topological group. For g ∈ G we denote by Lg : G → G the left
multiplication by g.

De�nition 1.3. A Haar measure H on G is a non-trivial left G-invariant Radon measure
A. In formulas, this means that for any f ∈ C!(X,R) and g ∈ G we have H(f) = H(f ◦Lg).

Example 1.4. • If G is a �nite group, the averaging operator Σ from (1) is a Haar
measure.

• On the group (R,+), the Lebesgue measure is a Haar measure. In fact, for any
f ∈ C!(X,R) and y ∈ R we have

∫
R f(x)dx =

∫
R f(x+ y)dx.

• On the group S1 a Haar measure is given by f 7→
∫ 2π
0 f(eiθ)dθ.

• On the group (R>0, ·), a Haar measure is given by f 7→
∫∞
0

f(x)
x dx. In fact, for y > 0

we have ∫ ∞
0

f(xy)

x
dx =

∫ ∞
0

f(z)y

z

dz

y
=

∫ ∞
0

f(z)

z
dz

Theorem 1.5 (General existence and uniqueness of the Haar measure). Let G be a locally

compact Hausdor� topological group. Then, there exists a Haar measure on G. Moreover,

the Haar measure is unique up to multiplication by a positive real number.

A general proof for topological groups see [1, Satz 4.3.8]. Here we prove instead a
weaker version, which is enough for our purposes.

De�nition 1.6. We call a continuous positive density onG a linear function F : C!(G,R) 7→
R if for any chart φ : U → G there exists qU ∈ C(U,R>0) such that for any h ∈ C!(φ(U),R)
we have F (h) =

∫
U qU (h ◦ φ), where

∫
U denotes the Lebesgue measure on U .

Let ψ : V → G be another chart and let h ∈ C!(φ(U) ∩ ψ(V )). Then by the change of
coordinates under integral (see [3, Satz 8.1.9]) we have

F (h) =

∫
U
qU · (h ◦ φ) =

∫
V

(qU ◦ φ−1 ◦ ψ) · (h ◦ ψ)|det d(φ−1 ◦ ψ)| (2)

from which it follows that qV = (qU ◦ φ−1 ◦ ψ)|det d(φ−1 ◦ ψ)| on the intersection.

Remark 1.7. If g ∈ G and F is a positive continuous density and so is Fg(f) := F (f ◦Rg).
In fact, if ψ is a chart, also Rg ◦ ψ is a chart, and we have for h ∈ C!(U,R) that

Fg(h ◦ (Rg ◦ ψ)−1) = F (h ◦ ψ−1 ◦ (Rg)
−1 ◦Rg) = F (h ◦ ψ−1) =

∫
U
qψh.

Similarly, also F ′(f) = F (f ◦ inv) is a positive continuous density because if ψ is a chart
also inv ◦ψ is a chart.
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Theorem 1.8 (Existence and uniqueness of continuous Haar density on Lie groups). Let
G be a Lie group. Then, there exists a continuous positive density on G which is a Haar

measure on G. Moreover, such a continuous density is unique up to multiplication by a

positive real number.

Proof. We �rst prove the uniqueness. Let µ and ν be two Haar measures which are
continuous positive densities.

Fix a chart φ : U → G. Then for any h ∈ C!(φ(U),R) we have µ(h) =
∫
U qµ(h ◦ φ) and

ν(h) =
∫
U qν(h ◦ φ) for some qµ, qν ∈ C(U,R>0). Let r = qν

qµ
∈ C(U,R>0).

For p, q ∈ U , we can �nd g ∈ G such that g(φ(p)) = φ(q) and Vp, Vq ⊂ U neighborhoods
of p and q such that g(φ(Vp)) = φ(Vq). Let rg = r ◦ φ−1 ◦ Lg−1 ◦ φ ∈ C(Vq,R>0).

For h ∈ C!(φ(Vq),R) we have by left-invariance of µ

µ(h) = µ(h ◦ Lg) =

∫
Vp

qµ(h ◦ Lg ◦ φ) =

∫
Vp

qνr(h ◦ Lg ◦ φ)

and by left-invariance of ν we have

µ(h) =

∫
Vq

qµ(h ◦ φ) =

∫
Vq

rqν(h ◦ φ) =

∫
Vq

qµ(r ◦ φ−1 ◦ φ)(h ◦ φ)

= ν((r ◦ φ−1)h) = ν((r ◦ φ−1 ◦ Lg)(h ◦ Lg))

=

∫
Vp

qνrg(h ◦ Lg ◦ φ)

If r(q) > rg(q) = r(p) we can �nd a neighborhood Vq where r(q) > rg(q) + ε for some
ε > 0 and h ∈ C!(φ(Vq),R≥0 with ν(h) > 0. We get a contradiction since

0 =

∫
Vp

qν(r − rg)(h ◦ Lg ◦ φ) >

∫
Vp

εqν(h ◦ Lg ◦ φ) = εν(h ◦ Lg) = εν(h)

We prove now the existence of the Haar measure. The cotangent space (T ∗eG) := (TeG)
is a vector space of dimension n = dimG. There exists a non-zero element ωe ∈ ΛnT ∗eG.
We can make ω an invariant G-form by setting ωg = L∗g−1 · ωe. Here by Lg−1 : G → G

induces (Lg−1)∗ : TgG
∼−→ TeG and on dual spaces it induces L∗g−1 : T ∗eG

∼−→ TgG and also

L∗g−1 : ΛnT ∗eG
∼−→ ΛnTgG.

We obtain a C∞ k-form ω, i.e. a section of the line bundle ΛnT ∗G. (This means that
locally on any chart φ the function u 7→ ω̃u)) : U → ΛnRn ∼= R is C∞, where ω̃φ(u) is the
image of ωu under the isomorphism ΛnRn ∼= ΛnT ∗uU

∼= ΛnT ∗φ(u)G.
The form ω is called a volume form. The form ω is left invariant, in fact we have

((Lg)
∗ω)h = L∗gωgh = L∗gLh−1g−1ωe = L∗h−1ωe = ωh.

Then we can use ω to obtain a Haar measure. From a volume form one gets a pos-
itive continuous density: on a chart φ : U → G this has the density function qU (u) =
|φ∗ωφ(u)(e1, . . . en)|, where U ⊂ Rn and (e1, . . . , en) is the standard basis of Rn. We see
that since ω does not vanish, the function qU is positive. To check that this de�nes a
positive continuous density we check that if x is in the intersection of two charts, i.e.
x ∈ φ(U) ∩ ψ(V ) we have

|φ∗ωx(e1, . . . en)| = |(ψ−1◦φ)∗ψ∗ωψ(u)(e1, . . . en)| = | det(dφ−1(x)(ψ
−1◦φ))||ψ∗ωx(e1, . . . en)|

so they glue together to a positive continuous density as discussed in (2).
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We conclude this section by describing the Haar measure on GLn(R).

Proposition 1.9. The Haar measure on GLn(R) is

f 7→
∫

f(A)

| det(A)|n
dA,

where we identify GLn(R) with an open subset of Rn2
.

Proof. Let {ei,j}i,j≤n be the standard basis of Mn(R). We �rst show

ωA =
de1,1 ∧ de1,2 ∧ . . . ∧ den,n

det(A)n

is a left invariant volume form on GLn(R).
Let B ∈ GLn(R). Recall that the linear map LB : Mn(R) → Mn(R) has determinant

det(LB) = det(B)n (in fact, LB can be seen as the map (B,B, . . . , B) on the columns of
Mn(R)).

For A,B ∈ GLn(R) we have

(L∗Bω)A(e1,1, . . . , en,n) = ωBA(Be1,1, . . . , Ben,n) =
Be1,1 ∧Be1,2 ∧ . . . ∧Ben,n

det(BA)n

=
det(B)ne1,1 ∧ e1,2 ∧ . . . ∧ en,n

det(B)n det(An)

= ωA(e1,1, . . . , en,n)

The formula for the Haar measure immediately follows.

2 Maschke's theorem for compact groups

On compact groups we can choose the Haar measure so that the integral of the constant
function 1 is 1.

Corollary 2.1. Let G be a compact Lie group. Then there exists a unique Haar measure∫
G on G such that

∫
G 1 = 1, where 1G is the constant function 1 on G.

Proof. This is clear, because 1G ∈ C!(G,R) = C(G,R) if G is compact.

For g ∈ G let Rg : G→ G be the right multiplication by g.

Corollary 2.2. Let G be a compact Lie group. Then the Haar measure is also right

invariant.

Proof. Let
∫
G be a Haar measure. Fix h ∈ G. Then Σh : f 7→

∫
G(f ◦ Rh) is also a left

invariant Haar measure, since for all g ∈ G we have

Σh(f ◦ Lg) =

∫
G

(f ◦ Lg ◦Rh) =

∫
G

(f ◦Rh ◦ Lg) = Σh(f).

Moreover, we have Σh(1) =
∫
G 1 ◦ Rg =

∫
G 1 = 1. It follows from the uniqueness in

Corollary 2.1 that
∫
G = Σh for all h ∈ G, hence

∫
G is right invariant (cf. Remark 1.7)

Exercise 2.3. Show that if G is compact we have
∫
G f(g)dg =

∫
G f(g−1)dg for all f ∈

C(G,R).
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As a �rst application, we show that every representation of a compact Lie group is
unitary.

Proposition 2.4. Let V be a �nite dimensional real representation of a compact Lie

group G. Then there exists a G-invariant scalar product b on V , i.e the image of the

homomorphism ρ : G → GL(V ) is included in O(V, b) := {A ∈ GL(V ) | b(Av,Aw) =
b(v, w)}.

Proof. Let (−,−) be any scalar product on V . We obtain a G-invariant scalar product by
setting b(v, w) =

∫
G(gv, gw). The scalar product b is clearly bilinear. It is positive de�nite

since b(v, v) =
∫
G(gv, gv) > 0 because the integral of a positive function is positive. It is left

invariant because b(hv, hw) =
∫
G(ghv, ghw) =

∫
G(gv, gw) since

∫
G is right invariant.

Remark 2.5. The same proof of Proposition 2.4 shows that if V is a complex representa-
tion of G, then there exists a G-invariant hermitian product h on G. This shows that the
image of ρ : G→ GL(V ) lies in U(V, h) := {A ∈ GL(V ) | h(Av,Aw) = h(v, w)}.

Recall that a representation is said completely reducible if it is isomorphic to a direct
sum of irreducible representations.

Theorem 2.6 (Maschke's theorem for compact groups). Every �nite dimensional repre-

sentations of a compact Lie group is completely reducible.

Proof. Let V be a representation of a compact group G. We show by induction on dimV
that V is completely reducible. The claim is clear if dimV = 1.

By Proposition 2.4, we �nd a left G-invariant scalar product b on V . If V is irreducible,
the claim is clear. Otherwise, there exists a G-stable subspace W ⊂ V . Let W⊥ := {v ∈
V | b(v, w) = 0 ∀w ∈W}.

The subspace W⊥ is also G-stable. In fact, if g ∈ G and v ∈ W⊥, we have for all
w ∈W that b(gv, w) = b(v, g−1w) = 0, so also gv ∈W⊥.

Since b is a scalar product we have V = W ⊕W⊥. This is a decomposition into smaller
representations. We can now easily conclude by induction.

An indecomposable and completely reducible representation is by de�nition also irre-
ducible, so we have the following immediate consequence.

Corollary 2.7. A representation of a compact Lie group is indecomposable if and only if

it is irreducible.

Remark 2.8. Because of Remark 2.5, both Theorem 2.6 and Corollary 2.7 hold for complex
representations. One just need to replace the G-invariant scalar product with a G-invariant
hermitian product in the proof.

We conclude this section by showing how one can reconstruct a completely reducible
complex representation using Schur's lemma.

Lemma 2.9 (Schur's lemma). Let V and W be irreducible complex representations of a

group G. Then we have

HomG(V,W ) =

{
0 if V 6∼= W

C Id if V = W
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Proof. Let f : V →W be a morphism. Then Ker f and Im f are both subrepresentations.
Since V and W are irreducible, if f 6= 0 the only possibilities are Ker f = 0 and Im f = W ,
which means that f is an isomorphism.

Assume now V = W . Then f is an endomorphism of V , so it has an eigenvalue λ ∈ C.
Also f − λ Id is a morphism of representations, so we must have Ker(f − λ Id) = V , from
which it follows that f = λ Id.

Corollary 2.10. Let V be a completely reducible complex representation of a group G.
Then

V ∼=
⊕

S irreducible

SdimC HomG(S,V ).

Proof. Since V is completely irreducible we can write V ∼=
⊕

S irreducible
SdS . From

Schur's lemma Lemma 2.9 we see that HomG(S, V ) ∼= HomG(S, SdS ) ∼= dSC, so dS =
dimC HomG(S, V ).

We conclude this section with a remark on dual representations. Recall that if V
is a representation of a group G, we can construct a dual representation V ∗ by setting
g · λ(v) = λ(g−1v) for all g ∈ G, v ∈ V and λ ∈ V ∗. This is a representation since

(g · h · λ)(v) = h · λ(g−1v) = λ(h−1g−1v) = gh · λ(v).

If V is a complex representation of G, we can also construct the complex conjugate
representation V . As a vector space, V is the same as V as an additive group but scalar
multiplication is de�ned by z · v = zv for all z ∈ C and v ∈ V . The action of g on V
remains the same. This de�nes a linear map. In fact, we have

g · (z · v) = g · (zv) = z(g · v)

Remark 2.11. There is a canonical isomorphism of vector space (and of representations)
between V

∗
= HomC(V ,C) and V ∗ = HomC(V,C) which sends f to f .

Proposition 2.12. Let G be a compact group and let V be a �nite dimensional represen-

tation of G. Then V ∼= V
∗
if V is complex and V ∼= V ∗ if V is real.

Proof. Assume V is complex. We can endow V with a G-invariant hermitian product
〈−,−〉. Then we can de�ne an isomorphism Φ : V → V

∗
by v 7→ 〈v,−〉. Notice that

λ(w) = 〈v, w〉 ∈ V ∗ since λ(zw) = z〈v, w〉 = z ·λ(w) and Φ is C-linear because Φ(zv)(w) =
〈zv, w〉 = z〈v, w〉 = zΦ(v)(w). Moreover, it is a morphism of representations because

Φ(gv)(w) = 〈gv, w〉 = 〈v, g−1w〉 = (g · Φ(v))(w)

for any g ∈ G and v, w ∈ V . The same proof also works in the case of real representations.

Because of Remark 2.11 we also have an isomorphism V
∼−→ V ∗ de�ned by v 7→ 〈−, v〉.

Similarly, we have an isomorphism V ∗
∼−→ V , which sends λ ∈ V ∗ to λ] ∈ V with λ =

〈−, λ]〉. We can thus de�ne a hermitian form on V ∗ by setting 〈λ, µ〉 = 〈µ], λ]〉 = λ(µ]).
Assume now V is an irreducible representation of G. If Then, by Lemma 2.9 the

isomorphism V
∼−→ V

∗
is unique up to a scalar, so there is a unique G-invariant non-

degenerate sesquilinear1 on V is unique up to a scalar. In particular, the G-invariant
hermitian product on V is unique up to a positive scalar.

1Sesquilinear means linear in the �rst component and antilinear in the second component
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Let A ∈ EndC(V ). We can then consider the adjoint endomorphism A† with respect
to any G-invariant hermitian product, so that we have 〈A−,−〉 = 〈−, A†−〉. Since the
G-invariant hermitian product is unique up to a scalar, the adjoint map A† is well de�ned.

Lemma 2.13. For A,B ∈ EndC(V ), let

〈A,B〉End(V ) = Tr(AB†).

Then 〈−,−〉 is an Hermitian product on EndC(V ).

Proof. We need to show that 〈A,A〉 > 0 if A 6= 0. We can choose an orthonormal basis of
V . Then A† is the transpose conjugate of A and we have

Tr(AA†) =
∑
i,j

ai,ja
†
j,i =

∑
i,j

|ai,j |2.

3 Matrix coe�cients

De�nition 3.1. Let ρ : G → GL(V ) be a �nite dimensional representation a group G.
We say that a function c : G → C is a matrix coe�cient of V if c(g) = λ(ρ(g)v) for some
v ∈ V and λ ∈ V ∗

Example 3.2. Let V = Cn with standard basis e1, . . . , en ∈ V and dual basis e∗1, . . . , e
∗
n ∈

V ∗, so thatG→ GL(V ) = GLn(C). Then the function ρ(g)i,j which returns the (i, j)-entry
of the matrix ρ(g) is a matrix coe�cient since ρ(g) = e∗i (ρ(g)ej).

On the vector space of all the functions Set(G,C) there is a left action given by g · f =
f ◦ (g−1·) and a right action given by f · g = f ◦ (·g). The matrix coe�cients belong to
Set(G,C) and can be characterized by the following Lemma.

Lemma 3.3. Let c : G → C be a function. Then c is a matrix coe�cient if and only if

span〈c ◦ (·h) | h ∈ G〉 is �nite dimensional.

Proof. Assume that c(g) = λ(ρ(g)v)) is a matrix coe�cient of ρ : G → GL(V ). Let
v1, . . . , vn be a basis of V and let v∗1, . . . , v

∗
n be the dual basis of V ∗. For h ∈ G we can

write

ρ(h)vi =
n∑
j=1

(ρ(h)v)jvj

for (ρ(h)v)j ∈ C. Then

c ◦ (·h)(g) = λ(ρ(gh)v) = λ(ρ(g)ρ(h)v) = λ(ρ(g)

n∑
j=1

(ρ(h)v)jvj) =

n∑
j=1

(ρ(h)v)jλ(ρ(g)vj).

This means that the span of all the c ◦ (·g) is included in the vector space generated by
λ(ρ(g)vj), for 1 ≤ j ≤ n.

In the other direction, assume that V := span〈c ◦ (·h) | h ∈ G〉 is �nite dimensional.
Then V is a representation of G where the action is de�ned by ρ(g)(c◦(·h) = c◦(·h)◦(·g) =
c ◦ (·gh). Let λ ∈ V ∗ de�ned by λ(f) = f(1). Then we have

λ(ρ(g)c) = λ(c ◦ (·g)) = c ◦ (·g)(1) = c(g),

and so c is a matrix coe�cient for V .
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Remark 3.4. A similar proof shows that c is a matrix coe�cient if and only if span〈c◦(g·) |
g ∈ G〉 is �nite dimensional.

If the group G is topological, then every matrix coe�cient of a continuous representa-
tion is also continuous. So matrix coe�cients of (continuous) representations are a subset
of C(G,C) ⊂ Set(G,C). We denote this set byM(G) The same argument as before show
that a continuous function c : G→ C is a matrix coe�cient if and only if it spans with its
right (or left) translations a �nite dimensional vector space.

Lemma 3.5. The matrix coe�cientsM(G) of G form a vector space.

Proof. It is clear that if c is a matrix coe�cient and z ∈ C, then zc is also a matrix
coe�cient. Assume that c(g) = λ(g · v) and c′(g) = µ(g · w) with v ∈ V , w ∈ W , λ ∈ V ∗
and µ ∈W ∗.

Consider the representation V ⊕W ofG. Let (λ, µ) ∈ (V ⊕W )∗ de�ned by (λ, µ)(x, y) =
λ(x) + µ(y) for all x ∈ V and y ∈W . Then (c+ c′)(g) = (λ, µ)(g · (v, w)) is also a matrix
coe�cient.

Proposition 3.6. Let G be a compact Lie group. Let cV (g) = λ(g ·v) and cW (g) = µ(g ·w)
be two matrix coe�cients, with v ∈ V , w ∈ W , λ ∈ V ∗ and µ ∈ W ∗ where V and W are

two irreducible complex representations of G.

1. If V 6∼= W , then cV and cW are orthogonal in L2(G), i.e. we have
∫
G cV cW = 0.

2. If V = W then

〈cV , cW 〉 =
〈v, w〉〈λ, µ〉

dimV
.

Remark 3.7. Before we start the proof, we recall how to compute the trace of a rank 1
map. Let A : V → V be a linear endomorphism of rank 1 with its image is spanned by
v. We can choose as basis of V the set {v, w1, . . . , wn} with {wi} a basis of v⊥ and the

coe�cient of v in Av is 〈Av,v〉〈v,v〉 , so we also get Tr(A) = 〈Av,v〉
〈v,v〉 .

Proof. Recall from Proposition 2.12 that W ∼= W
∗ ∼= (W ∗). Let v, w be as above and let

P : W ∗ → V de�ned by

P (φ) =

∫
G
φ(gw)(gv)dg (3)

for any φ ∈ W ∗. (Here to compute the integral on V we choose a basis a V and simply
compute the integral of the coe�cients.) The map P is C-linear: for z ∈ C we have

P (z · φ) =

∫
G
zφ(gw)(gv)dg = z

∫
G
φ(gw)(gv)dg = zP (φ).

Moreover, P is a morphism of representations: for any h ∈ H we have

P (h · φ) =

∫
G
φ(h−1gw)(gv)dg =

∫
G
φ(gw)(hgv)dg = h

(∫
G
φ(gw)(gv)dg

)
= h · P (φ).

If V 6∼= W ∼= W ∗, then P = 0 by Lemma 2.9. Let cV (g) = λ(gv) and cW (v) = µ(gw)
be matrix coe�cients with v ∈ V , λ ∈ V ∗, w ∈W and µ ∈W ∗. Then we have

〈cV , cW 〉 =

∫
G
cV (g)cW (g)dg = λ

(∫
G
µ(gw)(gv)dg

)
= λ(P (µ)) = 0.
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This shows the �rst part.
Assume now V = W . Consider the isomorphism Q : V

∼−→ V ∗ de�ned by v 7→ 〈v,−〉 7→
〈−, v〉. The composition P ◦Q is endomorphism of V , and thus P ◦Q = t Id for some t ∈ C
by Lemma 2.9. To �nd t we compute the trace of P ◦Q. We have

P ◦Q(u) =

∫
G
〈gw, u〉(gv)dg =

∫
G
〈u, gw〉(gv)dg =

∫
G
Mg(u)dg

where Mg(u) := 〈u, gw〉(gv). Then Mg is a C-linear endomorphism of V of rank 1 and we
have Tr(Mg) = 〈gv, gw〉 = 〈v, w〉. We get

Tr(P ◦Q) =

∫
G

Tr(Mg)dg =

∫
G
〈v, w〉dg = 〈v, w〉.

It follows that P ◦Q = 〈v,w〉
dimV and

〈cV , cW 〉 =

∫
G
cV (g)cW (g)dg = λ(P (µ)) = λ1(P ◦Q)(Q−1µ) =

〈v, w〉λ(µ])

dimV
=
〈v, w〉〈λ, µ〉

dimV
.

Corollary 3.8. Let M(ρ) ⊂M(G) be the vector space generated by all the matrix coe�-

cients of a representation ρ : G→ GL(V ). We have⊕
ρL irred.

M(ρL)
∼−→M(G).

Proof. The inclusions M(ρL) ⊂ M(G) induce a map ι :
⊕
M(ρL)

∼−→ M(G). This
is surjective since every matrix coe�cient is a sum of matrix coe�cients for irreducible
representation. Moreover, ι is injective. In fact, if

∑
L cL = 0, with cL ∈M(ρL), then〈∑

L

cL,
∑
L

cL

〉
=
∑
L

〈cL, cL〉 = 0.

Therefore 〈cL, cL〉 = 0 for all L, meaning that all the matrix coe�cients cL are trivial.

There is another natural way to describe the vector space M(ρ) and their hermitian
form.

Proposition 3.9. Let M(ρ) ⊂ M(G) be the vector space generated by all the matrix

coe�cients of a representation ρ : G→ GL(V ). If ρ is irreducible, we have an isomorphism

M : End(V )
∼−→M(ρ)

A 7→ (cA(g) = Tr(ρ(g)A))

and
√

dimV M is an isometry.

Proof. Recall that End(V ) ∼= V ∗ ⊗ V , where λ ⊗ v correspond to the rank 1 linear map
w 7→ λ(w)v. The map (λ, v) 7→ (g 7→ λ(ρ(g)v) is bilinear, so it extends to a surjective
linear map End(V )→M(ρ).

By linearity, it is enough to check that M(A)(g) = dim(V ) Tr(ρ(g)A) if A is of rank 1.
So we assume A(w) = λ(w)v for some λ ∈ V ∗ and v ∈ V \ {0}. Since the image of ρ(g)A
is spanned by gv, we have

Tr(ρ(g)A) =
〈g(A(gv)), gv〉
〈gv, gv〉

=
〈A(gv), v〉
〈v, v〉

= λ(gv).
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Let now B a rank 1 endomorphism of the form B = µ(−)w, with w ∈ V and µ ∈ V ∗.
Then its adjoint is B† = 〈−, w〉µ]. In fact, we have

〈Bv1, v2〉 = µ(v1)〈w, v2〉 = 〈w, v2〉〈v1, µ]〉 = 〈v1, 〈w, v2〉µ]〉 = 〈v1, B†v2〉.

So, if A and B are of rank 1 as above, we have

〈A,B〉End(V ) = Tr(AB†) =
〈AB†v, v〉
〈v, v〉

=
〈〈v, w〉Aµ], v〉
〈v, v〉

= 〈v, w〉〈λ, µ〉

It follows that
√

dimVM is an isometry and in particular an isomorphism.

Remark 3.10. The isomorphism M is also an isomorphism of G × Gop representations.
In fact, both on End(V ) and on M(ρ) we have a left and a right G-action and for any
g, h ∈ G we have

M(ρ(h1)Aρ(h2))(g) = Tr(ρ(g)ρ(h1)Aρ(h2)) = Tr(ρ(h2gh1)A) = M(A)(h2gh1).

4 Compact operators and the spectral theorem*

In this section we discuss the spectral theorem for compact operators. This theorem will be
applied to prove Peter�Weyl theorem for compact (Lie) groups. However, the arguments
are not geometric nor group theoretic but rather belong to the theory of Hilbert spaces in
functional analysis.

Let H be a Hilbert space, that is a real (or complex) vector space with a scalar (or
hermitian) product 〈−,−〉 which makes it a complete topological space.

Example 4.1. If G is a compact Lie group, we consider the space of square integrable
functions L2(G) := {f : G→ C |

∫
G |f(g)|2 <∞}, where

∫
G is the Haar measure. This is

a Hilbert space with respect to the hermitian product is 〈f1, f2〉 =
∫
G f1(g)f2(g)dg. On an

open set U ⊂ Rn every function f ∈ L2(G) can be approximated with C∞-functions with
compact support [4, Satz 2.6.1]. In particular, the space C∞(G) ⊂ L2(G) is dense.

However, for our purposes, is enough to simply de�ne L2(G) as the completion of the
space C(G) with respect to the metric 〈−,−〉 as above.

De�nition 4.2. We say that a linear map T : H → H is self-adjoint if 〈Tv,w〉 = 〈v, Tw〉
for all v, w ∈ H.

The norm of a linear map T is de�ned as ‖T‖ := sup{‖T (v)‖ | v ∈ H and ‖v‖ = 1}. A
linear map is continuous if and only if it has �nite norm.

De�nition 4.3. We say that T is compact if for any bounded sequence (vi) in H, the
sequence (Tvi) has a converging subsequence. Notice that a compact operator has �nite
norm.

Lemma 4.4. Let H 6= 0 be a Hilbert space and let T : H → H be a compact and self-adjoint

operator. Then one between ‖T‖ and −‖T‖ is an eigenvalue of T .

Proof. We have ‖T 2‖ ≤ ‖T‖2 since for any linear map T since ‖T 2(v)‖ ≤ ‖T‖‖T (v)‖ ≤
‖T‖2‖v‖. Since T is self-adjoint, we also have ‖T 2‖ ≥ ‖T‖2. In fact, for any v ∈ H of norm
1. We have ‖T (v)‖2 = 〈Tv, Tv〉 = 〈v, T 2(v)〉 ≤ ‖v‖‖T 2(v)‖. It follows that ‖T 2‖ = ‖T‖2.

Let now vn be a sequence of vectors of norm 1 such that lim ‖T 2vn‖ = ‖T 2‖. Since
T is compact, up to replacing with a subsequence, we can assume that the sequences Tvn
and T 2vn converge.
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Since ‖T 2vn‖ ≤ ‖T‖‖Tvn‖, we have ‖T‖ = 0, in which case T = 0 and the statement

is clear, or ‖T‖ ≥ lim ‖Tvn‖ ≥ ‖T
2‖
‖T‖ = ‖T‖, and so lim ‖Tvn‖ = ‖T‖.

Consider the sequence an := ‖(T 2 − ‖T‖)vn‖. Since T is self-adjoint, we have

an = 〈vn, (T 4 − 2‖T‖2T 2 + ‖T 4‖)vn〉 = ‖T 2vn‖2 − 2‖T‖2‖Tvn‖2 + ‖T‖4

and limn→∞ an = 0.
Let w = limT 2vn. Then we obtain also lim ‖T‖2vn = w, and since we can assume

‖T‖ 6= 0, also vn converges to v := w
‖T‖ . Then we have T 2v = limT 2vn = lim ‖T 2‖vn =

‖T‖2v. It follows that
(T − ‖T‖)(T + ‖T‖)(v) = 0,

so either Tv = −‖T‖v or Tv′ = ‖T‖v′ for v′ = (T + ‖T‖)(v).

For a linear map T : H → H, we denote by Hλ the eigenspace associated to the
eigenvalue λ ∈ C. The eigenspaces are in direct sum, but in general we only have an
inclusion

⊕
Hλ ⊂ H.

Lemma 4.5. If T is self-adjoint, then the eigenspaces of T are orthogonal to each other.

Proof. Let v ∈ Hλ and w ∈ Hµ with µ 6= λ. Then λ〈v, w〉 = 〈Tv,w〉 = 〈v, Tw〉 = µ〈v, w〉,
from which it follows 〈v, w〉 = 0.

Let H be a Hilbert space, and let Vi ⊂ H, for i ∈ I, be orthogonal subspaces. We write⊕̂
i∈IVi for the closure of the vector space

⊕
i∈I Vi. Recall that a subspace is dense if and

only if its orthogonal is trivial.

Theorem 4.6 (Spectral theorem for compact operators). Let H be a Hilbert space and

let T : H → H be a compact and self-adjoint operator. Then H =
⊕̂

λ∈CHλ and all the

eigenspaces Hλ for λ 6= 0 are �nite dimensional.

Proof. Assume that the direct sum is not dense, so it has a non-trivial orthogonalW . Then
T restricts to a compact operator on W . In fact, if w ∈ W , we have 〈Tw, v〉 = 〈w, Tv〉 =
λ〈w, v〉 = 0 for all v ∈ Hλ. But Lemma 4.4, shows that T has an eigenvector in W , which
gives a contradiction since 〈v, v〉 > 0.

Assume that Hλ is in�nite dimensional for λ 6= 0. Then we can �nd a sequence of
vectors vn of norm 1, for example an orthonormal basis, which does not converge, such
that also Tvn = λvn does not converge.

5 Convolutions on compact Lie groups

Let G be a compact Lie group with Haar measure
∫
G. On C(G) we can consider several

di�erent norms.

‖f‖1 :=

∫
G
|f(g)|, ‖f‖2 =

√∫
G
|f(g)|2, ‖f‖∞ = sup

g∈G
f(g).

For any f ∈ C(G) we have ‖f‖1 ≤ ‖f‖2 ≤ ‖f‖∞. In fact, ‖f‖1 =
∫
G |f | = 〈|f |, 1〉 ≤

‖f‖2 · ‖1‖ = ‖f‖2, while the second inequality is trivial. In particular, we have C(G) ⊂
L∞(G) ⊂ L2(G) ⊂ L1(G).
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De�nition 5.1. If φ ∈ C(G) and f ∈ L2(G) we de�ne the convolution

Tφ(f)(g) := (φ ∗ f)(g) :=

∫
G
φ(gh−1)f(h)dh.

Remark 5.2. Using the change of variable h 7→ h−1g (which we can because the Haar
measure is right invariant and inv-invariant), we also get

(φ ∗ f)(g) =

∫
G
φ(h)f(h−1g)dh.

The goal of this section is to show that convolution with a continuous function gives a
compact operator on L2(G). We start by proving a version of the Heine�Cantor theorem
for compact Lie groups.

Proposition 5.3. Let G be a compact Lie group and let f ∈ C(G). Then for any ε there

exists a neighborhood U of the unity e ∈ G such that for any g ∈ G and u ∈ U we have

|f(g)− f(ug)| < ε.

Proof. Let ψ : U → G be a local chart around e ∈ G where U is an open set in RdimG

containing 0 and let B(r) be the image under ψ of the open ball around 0 ∈ U of radius r.
Fix ε > 0. For any g ∈ G by continuity there is δg > 0 such that for any u ∈ Bδg we

have |f(g) − f(ug)| < ε
2 . Then

⋃
g∈GB(

δg
2 )g is a open cover of G and by compactness it

admits a �nite subcover
⋃k
i=1B(

δgi
2 )gi. Let δ′ be the minimum among the δgi . Since the

multiplication is continuous, we can �nd δ > 0 such that B(δ) · B(δ) ⊂ Bδ′ ⊂ B(δgi) for
any i.

Let now g ∈ G and u ∈ Bδ. We have g ∈ B(
δgi
2 )gi for some i. Then also ug ∈ B(δgi)gi

because ugg−1i ∈ B(δ)B(δ) ⊂ B(δgi). We have

|φ(ug)− φ(g)| ≤ |φ(ug)− φ(g′)|+ |φ(g′)− φ(g)| ≤ ε

2
+
ε

2
= ε.

We are also going to need the Arzelà�Ascoli theorem, which we recall.

Theorem 5.4 (Arzelà�Ascoli). Let X be a compact topological space and let B ⊂ C(X) a

bounded and equicontinuous set, i.e. for any x ∈ X and ε > 0 there exists a neighborhood

U of x such that |f(x) − f(y)| < ε for all y ∈ U and f ∈ B. Then every sequence in B
has a uniformly convergent subsequence.

Proof. Fix ε > 0. For any x there is a neighborhood Ux of x such that |f(x) − f(y)| < ε
for all y ∈ Ux and f ∈ B. There exists �nitely many x1, . . . , xr such that Ux1 , . . . , Uxr
cover X.

Since B is bounded, there exists M ∈ Z>0 such that −Mε < f(x) < Mε for all x ∈ X
and f ∈ B.

Let σ : {1, 2, . . . , r} → {−M,−M+1, . . . ,M−1,M} be an arbitrary function. It there
exists such a function, let fσ ∈ B such that σ(i)ε ≤ fσ(xi) < (σ(i) + 1)ε for all i.

We claim that for any f ∈ B there exists σ such that ‖f − fσ‖∞ < 3ε. In fact, we can
choose σ such that σ(i)ε ≤ f(xi) < (σ(i) + 1)ε (so fσ exists!). For any x ∈ X we have
x ∈ Uxi for some i and

|f(x)− fσ(x)| ≤ |f(x)− f(xi)|+ |f(xi)− fσ(xi)|+ |fσ(xi)− fσ(x)| < 3ε.

Let now fn be a sequence in B. For any m > 0 we can �nd a function σm as before
such that there are in�nitely many functions fn in the ball B(fσm , 3

−m). So we can �nd
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subsequences (f
(1)
n ) ⊂ (fn) in B(fσ1 , 3

−1), (f
(2)
n ) ⊂ (f

(1)
n ) in B(fσ2 , 3

−2) and so on. Finally

choose fn1 ∈ (f
(1)
n ), fn2 ∈ (f

(2)
n ) and so on.

The sequence fnk is a Cauchy sequence and it is therefore uniformly convergent.

Proposition 5.5. Let φ ∈ C(G) and consider the linear operator Tφ : L2(G) → L2(G)
de�ned by Tφ(f) = φ ∗ f . Then Tφ is a compact operator and the image of Tφ is contained

in C(G).

Proof. The function φ is uniformly continuous and by Proposition 5.3, for any ε > 0 we
can �nd a neighborhood U of the unity e ∈ G such that |φ(g)− φ(ug)| < ε for any g ∈ G
and u ∈ U . For any f ∈ L2(G) and g ∈ G and u ∈ U we have

|Tφf(g)− Tφf(ug)| =
∣∣∣∣∫
G

(φ(gh−1)− φ(ugh−1))f(h)dh

∣∣∣∣
≤
∫
G

∣∣φ(gh−1)− φ(ugh−1)
∣∣ · |f(h)|dh ≤ ε‖f‖1 ≤ ε‖f‖2 (4)

Notice that this implies that Tφf is continuous, and so it is in L2(G).
To show that Tφ is compact, we need to show that every succession in B := {Tφ(f) |

f ∈ L2(G), ‖f‖2 ≤ 1} has a converging subsequence. This follows from the Arzelà�Ascoli
theorem after we show that B is bounded and equicontinuous. It is bounded because

‖Tφ(f)‖2 ≤ ‖Tφ(f)‖∞ = sup
g∈G

∣∣∣∣∫
G
φ(gh−1)f(h)dh

∣∣∣∣
≤ sup

g∈G
‖φ‖∞

∫
G
|f(h)|dh = ‖φ‖∞‖f‖1 ≤ ‖φ‖∞‖f‖2. (5)

It is equicontinuous because by (4) we have |Tφf(g) − Tφf(ug)| ≤ ε‖f‖2 ≤ ε for any
f ∈ B. We have then equicontinuity by taking the neighborhood Ug of g ∈ G.

We need a �nal ingredient to apply the spectral theorem: self-adjointness.

Proposition 5.6. Assume that φ(g−1) = φ(g) for all g ∈ G. Then Tφ : L2(G) → L2(G)
is self-adjoint.

Proof. Let f1, f2 ∈ L2(G). Then, by Fubini's theorem [4, Satz 1.7.16], we have

〈Tφf1, f2〉 =

∫
G

(∫
G
φ(gh−1)f1(h)dh

)
f2(g)dg =

∫
G

∫
G
φ(gh−1)f1(h)f2(g)dgdh

〈f1, Tφf2〉 =

∫
G
f1(g)

(∫
G
φ(gh−1)f2(h)dh

)
dg =

∫
G

∫
G
f1(g)φ(hg−1)f2(h)dgdh

and the equality 〈Tφf1, f2〉 = 〈f1, Tφf2〉 follows by swapping the role of g and h.

6 Peter�Weyl theorem

We can now prove the �rst part of Peter�Weyl theorem

Theorem 6.1 (Peter�Weyl theorem - First version). Let G be a compact Lie group. Then

the matrix coe�cients are dense in C(G) with respect to the norm ‖ − ‖∞.
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Proof. Let f ∈ C(G) be a continuous function on G. Since G is compact, by Proposition 5.3
there exists a neighborhood U of e ∈ G such that for any g ∈ G and u ∈ U we have
|f(u−1g)− f(g)| < ε.

Let now 0 6= ψ ∈ C!(U ∩ U−1,R≥0). Let φ(g) := ψ(g) + ψ(g−1). Then also φ ∈ C!(U ∩
U−1,R≥0). Up to rescaling we can assume

∫
G φ = 1. Notice that we have φ(g) = φ(g−1)

for all g ∈ G. Therefore, by Proposition 5.6, the operator Tφ is self-adjoint on L2(G), and
we have

|Tφf(g)− f(g)| =
∣∣∣∣∫
G
φ(h)f(h−1g)− φ(h)f(g)dh

∣∣∣∣ ≤ ∫
G
φ(h)|f(h−1g)− f(g)|dh ≤ ε

for all g ∈ G. Let L2(G)λ be the eigenspaces of Tφ. Since Tφ is compact and self-adjoint,
we have

L2(G) =
⊕̂

λ
L2(G)λ,

so for any ε′ there exists p ∈
⊕
L2(G)λ approximating f with ‖f − p‖2 < ε′. We choose

ε′ = ε
‖φ‖∞ . We have by (5) that

‖Tφf − Tφp‖∞ = ‖Tφ(f − p)‖∞ ≤ ‖φ‖∞‖f − p‖2 ≤ ε.

So it follows that ‖f − Tφp‖∞ < 2ε.
Moreover, we have Tφp ∈

⊕
λ 6=0 L

2(G)λ. In particular, it is included in a �nite direct
sum of �nite dimensional vector spaces.

Claim 6.2. If λ 6= 0, every element of L2(G)λ, for λ 6= 0, consists of a matrix coe�cients.

Proof of the claim. Let f ∈ L2(G)λ. For g, x ∈ G we have

Tφ(f ◦ (·g)(x)) =

∫
G
φ(xh−1)f(hg)dh =

∫
G
φ(xgh−1)f(h)dh = (Tφf)(gx) = λ(f ◦ (·g))(x).

since
∫
G is right invariant. Since L2(G)λ is �nite dimensional, the statement follows from

Lemma 3.3.

It follows that Tφp is a is a matrix coe�cient. We have thus successfully approximated
any function f in C(G) with a a matrix coe�cient.

Since the continuous function are dense in L2 (see for example [4, Satz 2.6.1]) we have
the following consequence.

Corollary 6.3. Let G be a compact Lie group. Then the matrix coe�cients are dense in

L2(G) with respect to the norm ‖ − ‖2.

7 Fourier theory of compact group

We prove now a second version of the Peter�Weyl theorem, which usually also referred to
as non-abelian Fourier analysis, since it is a natural generalization of the Fourier series (see
Example 8.4).

Recall that if ρ : G → GL(V ) is a representation of G we denote byM(ρ) the vector
space of matrix coe�cients of ρ and and byM(G) the vector space of all matrix coe�cients.

Then we have a surjective morphism

G :
⊕

L irred.

EndC(L)→M(G)

A ∈ EndC(L) 7→
√

dimL cA
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We have already shown in Proposition 3.9, that F is injective and it is surjective since every
matrix coe�cient can be written as sum of matrix coe�cients for irreducible representations
(cf. Lemma 3.5). So F is an isomorphism (of G × Gop-representations, cf. Remark 3.10)
Moreover, it is an isometry by Proposition 3.6 if we endow each EndC(L) with the scalar
product (A,B) = dim(L) Tr(AB†).

Let f ∈ C(G) be a continuous function. Then on any representation V of G, f induces
a linear map f̂V : V → V de�ned by f̂V (v) =

∫
G f(g−1)gvdg.2

We can give a second version of the Peter�Weyl theorem, also known as the Fourier
series expansion for compact groups.

Theorem 7.1. The morphism G extends to an isomorphism of Hilbert spaces

G :
⊕̂

L irred.

EndC(L)→ L2(G)

and the inverse F := G−1 sends f ∈ L2(G) to the tuple of endomorphism
√

dimL f̂L :
L→ L).

Proof. We have an isometry, so it is an isomorphism of pre-Hilbert spaces and it extends
to an isomorphism on the completions. By Corollary 6.3 we know that the completion of
M(G) is L2(G). It remains to compute the inverse of G.

SinceM(G) is dense in C(G), we can assume f ∈M(G). In fact if fn → f in L2 then

f̂nV → f̂V since on compact spaces ‖f − fn‖1 ≤ ‖f − fn‖2. By linearity we can assume
f(g) = φ(gv) for some w ∈ W and φ ∈ W ∗, with V irreducible. We need to show that
F(f) is the endomorphism (

√
dimV )−1φ(−)w : W →W

Then, for an irreducible representation V and v ∈ V we have

f̂V v =

∫
G
φ(g−1w)gvdg =

∫
G
〈w, gφ]〉gvdg =

∫
G
〈gφ], w〉gvdg = P (〈−, w〉) = P ◦Q(w)

with P de�ned similarly as in (3) and Q(w) = 〈−, w〉. So

F(f)(v) =
√

dimV f̂V (v) =

{
0 if V 6∼= W
√

dimV P ◦Q(w) = 〈v,φ]〉√
dimV

w = φ(v)w√
dimV

if V = W.

The isomorphism F is also compatible with the convolution product when this is de-
�ned. However, notice that in general L2(G) is not an algebra since the convolution of two
L2-functions may be not in L2(G).

We de�ne a new operation on
⊕

EndL(C), by setting A ? B = 1√
dimL

A ◦ B for any

A,B ∈ End(L)

Proposition 7.2. Let f1, f2 ∈ C(G) we have

F(f1 ∗ f2) = F(f2) ? F(f1).

Proof. Let V be an irreducible representation and let v ∈ V . We have

F(f1 ∗ f2)(v) =
√

dimV

∫
G
f1 ∗ f2(g−1)gvdg =

√
dimV

∫
G

∫
G
f1(g

−1h−1)f2(h)gvdhdg.

2This notation is probably non-standard. Usually one de�nes f̂V (v) =
∫
G
f(g)gvdg.
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On the other hand we have

F(f2) ? F(f1)(v) = F(f2)

(∫
G
f1(g

−1)(gv)dg

)
=
√

dimV

∫
G
f2(h

−1)

(∫
G
f1(g

−1)(hgv)dg

)
dh

=
√

dimV

∫
G

∫
G
f1(g

−1)f2(h)(h−1gv)dgdh

=
√

dimV

∫
G

∫
G
f1(g

−1h−1)f2(h)gvdgdh.

where we have used that we can change h with h−1 in the third equality and that
∫
G is

invariant under left multiplication with h−1.

χV ∗ χW = 0 if V and W are non-isomorphic and χV ∗ χV = G(G(χV ∗ χW )
We have

χL ∗ χL(g) =

∫
G
χL(gh−1)χL(h)dh =

∫
G

Tr(ρ(gh−1) Tr(ρ(h))dh

χL ∗ χL = χL

Corollary 7.3. Let G be a compact group and let {ρL : G → U(dL,C)}L∈I be a set of

representatives of the isomorphism classes of the irreducible representations of G. Then

the matrix coe�cients {
√

dimL(ρL)i,j} L∈I
i,j≤dimL

form an Hilbert basis of L2(G).

Proof. The morphism G is an isometry, and the matrix coe�cients
√

dimL(ρL)i,j are pre-
cisely the image of the elementary matrices Ei,j , which form an orthonormal basis of
End(CdimL) ∼= Mn×n(CdL).

8 Peter�Weyl for Class functions

The image of IdL ∈ EndC(L) under this isomorphism is
√

dimLχL(g) where χL(g) :=
Tr(ρL(g)). We call the trace of an irreducible representation a character of G.

If V and W are irreducible representations, by Proposition 7.2 we have

χV ∗ χW = G(F(χV ∗ χW )) = G(F(χV ) ? F(χW ))

= G
(

IdV ? IdW√
dimV · dimW

)
=

{
0 if V 6∼= W
χV

dimV if V = W.

Let now eL := (dimL)χL. Then we have eL ∗ eL = eL.

De�nition 8.1. A class function is a function f : G→ C is a function that it is constant
of the conjugacy classes of G, i.e. such that for any g, h ∈ G we have f(g−1hg) = f(h).

Clearly, the character functions χL are class functions since the trace is invariant under
conjugation.

Proposition 8.2. Let G be a compact Lie group. Then the irreducible characters of G
generate a dense subspace of the space of continuous class functions on G.
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Proof. Let φ be a class function. Thanks to Theorem 6.1. we can �nd a matrix coe�cient
c ∈M(G) such that ‖φ− c‖∞ < ε. Consider the function

c̃(x) :=

∫
G
c(gxg−1)dg.

This is a class function, since c̃(h−1xh) =
∫
G c(ghxh

−1g−1)dg =
∫
G c(gxg

−1)dg and we
have

|φ(x)− c̃(x)| =
∣∣∣∣∫
G

(φ(gxg−1)− c(gxg−1))dg
∣∣∣∣ ≤ ‖φ− c‖∞ < ε.

Since G is compact, we can write c =
∑
ci as a �nite sum of matrix coe�cients for

irreducible representations Vi with ci(g) = λi(gvi), for v ∈ Vi and λ ∈ V ∗i , we have

c̃i(x) =

∫
G
λi(gxg

−1vi)dg = λi

(∫
G
gxg−1vidg

)
Consider the morphism Aix : Vi → Vi de�ned by v 7→

∫
G gxg

−1vdg. We have

Aix(hv) =

∫
G
gxg−1hvdg =

∫
G
hh−1gxg−1hvdg = hAix(v).

So A is G-equivariant, and by Schur's Lemma 2.9 we get A = rix IdVi for some rix ∈ C.
Computing the trace we obtain

rix dimVi = Tr(Aix) =

∫
G

Tr(ρ(gxg−1)dg =

∫
G

(Tr(ρ(x)) = χVi(x),

so

c̃(x) =
∑

c̃i(x) =
∑

λi(r
i
xvi) =

∑ λi(vi)

dimVi
χVi(x)

and thus it is a linear combination of characters.

Corollary 8.3. For any class function f ∈ L2(G) we have

f =
∑

L irred.

〈f, χL〉χL,

with the series converging with respect to ‖ − ‖2 and

‖f‖22 =
∑

L irred.

〈f, χL〉2.

Proof. If f is a class function, then also f̂L is invariant under conjugation. In fact for v ∈ L
we have

hf̂Lh
−1v =

∫
G
f(g−1)(hgh−1v)dg =

∫
G
f(hg−1h−1)gvdg =

∫
G
f(g−1)gvdg = f̂L(v)

So f̂L(hv) = hf̂L(v) and f̂L is a morphism of representations. If L is irreducible, by Schur's
Lemma 2.9 we must have f̂L = α IdL for some α ∈ C. To �nd α we compute as usual the
trace of f̂L. We have

Tr(f̂L) =

∫
G
f(g−1 Tr(ρL(g))dg =

∫
G
f(g−1)χL(g)dg =

∫
G
f(g)χL(g−1) = 〈f, χL〉,

where we used that χL(g−1) = χL(g) since we can always �nd a basis on which ρ(g) is

unitary. So f̂L = 〈f,χL〉
dimL IdL and we conclude that

f = G(F(f)) = G(
1√

dimL

∑
L

〈f, χL〉 IdL) =
∑
L

〈f, χL〉χL.
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Example 8.4. If the group G is abelian, then every function is a class function and
moreover all the irreducible representations are of dimension one. So one gets that every
L2-function can be approximated with the characters of the irreducible representations
G→ C∗.

In the case of S1 we recover the classical results from Fourier analysis: if f ∈ L2(S1),
then

f =
∑
n∈Z
〈f, einθ〉einθ =

1

2π

(∫ 2π

0
f(eiθ)e−inθdθ

)
einθ.
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