Noncommutative Algebra and Symmetry WS 2021/22 — Ubungsblatt 2

26. October 2021

Exercise 2.1: Let k be a field. Match the monoids on the left with the corresponding monoid algebra on the right (and show that they are isomorphic!)

1.	Z	a	k[x,y]
2.	$\mathbb{N}\times\mathbb{N}$	b	$k[x,y]/(x^2-y^3)$
3.	$\{0\}\cup\{n\in\mathbb{N}\mid n\geq 2\}$	c	k[x,y]/(xy-1).

Exercise 2.2: Let k be a field and C_n be the cyclic group with n elements.

- 1. Show that $kC_n \cong k[x]/(x^n 1)$.
- 2. Assume that $(x^n 1)$ decomposes into linear factors in k[x]. Show that all irreducible representations of C_n have dimension 1.
- 3. Assume further that $n \neq 0$ in k. Then show that kC_n is isomorphic as a ring to $\underbrace{k \times k \times \ldots \times k}_{n}$.
- 4. Show that in this case all representations of C_n are semisimple.

Exercise 2.3: Let *m* be an integer and consider the \mathbb{Z} -module $\mathbb{Z}/m\mathbb{Z}$.

- 1. Write a Jordan-Hölder composition series of the \mathbb{Z} -module $\mathbb{Z}/m\mathbb{Z}$.
- 2. Show that $\mathbb{Z}/m\mathbb{Z}$ is a semisimple \mathbb{Z} -module if and only if m is square-free (that is, if p^2 does not divide m for any prime p).

Exercise 2.4: Let k be an algebraic closed field. Let M be a k[x]-module which is finite dimensional as a k-vector space. Show that M is semisimple if and only if the action of x on M is diagonalizable.

Exercise 2.5: Let k be a field and $T_2(k)$ be the algebra of upper triangular 2×2 matrices over k. Find a composition series of $T_2(k)$ as a module over itself. Deduce that there are exactly two classes of isomorphism of simple $T_2(k)$ -modules.