Noncommutative Algebra and Symmetry WS 2021/22 — Ubungsblatt 5 12.11.2021

Exercise 5.1: Let G be a group and $\rho : G \to GL(V)$ be a representation of G. Show that $det(\rho(x)) = 1$ for all $x \in (G, G)$.

Exercise 5.2: Let G be a finite group and let χ be the character of a finite dimensional representation of G over \mathbb{C} . Show that

$$N := \{ g \in G \mid \chi(g) = \chi(1) \}$$

is a normal subgroup of G.

Hint: $\chi(g)$ is the sum of (hom many?) roots of unity.

Exercise 5.3: Let G be a simple group. Show that G does not have an irreducible representation of dimension 2.

Hint: Otherwise |G| must be even (why?) and there exists an element s of order 2. What are the possible eigenvalues of s?

Exercise 5.4: Let Q_8 be the quaternion group with 8 elements $\{1, -1, i, -i, j, -j, k, -k\}$ where the multiplication is defined as follows:

$$(-1)^2 = 1$$
, $(-1)x = -x$ for all x
 $i^2 = j^2 = k^2 = -1$
 $ij = k, \ jk = i, \ ki = j$
 $ji = -k, \ kj = -i, \ ik = -j$

Compute the character table of Q_8 .

(Hint: (-1) is central, and $Q_8/\{\pm 1\} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$). Compare it with the character table of D_4 . Does the character table deter-

mine the group?