Noncommutative Algebra and Symmetry WS 2021/22 — Ubungsblatt 8 26.11.2021

Exercise 8.1: Let H be a group and $G = \{1\}$. Let $f : H \to G$ be the trivial group homomorphism. (In this case f is not the inclusion!)

1. Show that k = kG is isomorphic as a kH-module to kH/I, where I is the two-sided ideal

2. Show that
$$I = \left\{ \sum a_h h \in kH \mid \sum a_h = 0 \right\}.$$

 $\operatorname{coind}_{H}^{1}(V) = k \otimes_{kH} V = (kH/I) \otimes_{kH} V = V/(I \cdot V)$

The vector space $V_H := V/(I \cdot V)$ is called the *coinvariants* of V.

- 3. Show that $\operatorname{ind}_{H}^{1}(V) = \operatorname{Hom}_{H}(k, V) = V^{H}$ are the *H*-invariants of *V*.
- 4. If H is finite then the map $b: V \to V$ defined by $v \mapsto \sum_{h} h \cdot v$ induces a map $b: V_H \to V^H$. Show that if char(k) = 0, then b is an isomorphism.

Exercise 8.2: Let H be a finite group and k be a field of characteristic 0. Assume $H \subset G$ and let k be the trivial representation of H. Then

$$\operatorname{coind}_{H}^{G}(k) = kG \cdot (\sum_{h \in H} h)$$

(In particular, if Y is a Young diagram, we have $M(Y) = \operatorname{coind}_{C}^{S_{Y}}(k)$, where C is the stabilizer of the columns.)

Exercise 8.3: Show that the coinduction is transitive. If $f: G \to G'$ and $g: G' \to G''$ are group homomorphism, then

$$\operatorname{coind}_{G}^{G''}(V) \cong \operatorname{coind}_{G}^{G'}(\operatorname{coind}_{G'}^{G''}(V))$$

Exercise 8.4: Let S_{n-1} be the subgroup of elements in S_n fixing n. Using the Frobenius reciprocity show that the following statements, known as the *branching rules*, are equivalent.

1. If Y is a diagram with n boxes, then

$$res_{S_n}^{S_{n-1}}(L(Y)) = \bigoplus L(Y')$$

where the sum is over all the Young diagrams Y' obtained by removing a box from Y.

2. If Z is a diagram with n-1 boxes, then

$$ind_{S_{n-1}}^{S_n}(L(Z)) = \bigoplus L(Z')$$

where the sum is over all the Young diagrams Z' obtained by adding a box from Z.