Noncommutative Algebra and Symmetry WS 2021/22 — Ubungsblatt 10 23.12.2021

Exercise 10.1: Let $G = C_p \times C_p$ and let k be a field of characteristic p. The goal of this exercise is to show that there are infinitely many isomorphism classes of indecomposable kG-modules. (Studying indecomposable representations is much harder than irreducible representations in characteristic p!)

- 1. Show that $kG \cong k[x, y]/(x^p, y^p)$, so a kG-module is a vector space W together with two commuting endomorphisms f, g with $f^p = g^p = 0$.
- 2. Let $V = V_{2n+1}$ be a k-vector space with basis $v_0, \ldots, v_n, w_1, \ldots, w_n$ and let $f(w_i) = v_{i-1}, f(v_i) = 0, g(w_i) = v_i$ and $g(v_i) = 0$. Then $f^2 = g^2 = 0$ and fg = gf = 0, so V is a kG-module.

The goal is to show that $V = V_{2n+1}$ is indecomposable, or equivalently that $\operatorname{End}_{kG}(V)$ is local.

- 3. Show that $V^G = \ker f \cap \ker g = \langle v_0, \ldots, v_n \rangle$ and $\overline{V} := V/V^G = \langle \overline{w}_1, \ldots, \overline{w}_n \rangle$, where \overline{w}_i is the projection of w_i to \overline{V} . Moreover, f and g induce injective linear maps $\overline{V} \to V^G$.
- 4. Let $I = \{ \psi \in \operatorname{End}_{kG}(F) \mid \operatorname{Im}(\psi) \subset V^G \}$. Show that I is a nilpotent ideal, hence $I \subset J(\operatorname{End}_{kG}(V))$.
- 5. Let $\phi \in \operatorname{End}_{kG}(V)$. Show that ϕ induces a morphism $\overline{\phi} : \overline{V} \to \overline{V}$.
- 6. Assume that

$$\bar{\phi}(\bar{w}_1) = \lambda_1 \bar{w}_1 + \lambda_2 \bar{w}_2 + \ldots + \lambda_n \bar{w}_n,$$

with $\lambda_i \in k$. Use $g(w_1) = f(w_2)$ to deduce $\lambda_n = 0$ and
 $\bar{\phi}(\bar{w}_2) = \lambda_1 \bar{w}_2 + \lambda_2 \bar{w}_3 + \ldots + \lambda_{n-1} \bar{w}_n$

- 7. Deduce that $\bar{\phi}$ is completely determined by its value in \bar{w}_1 , and that $\bar{\phi}\bar{w}_i = \lambda_1 \bar{w}_i$ for any *i*.
- 8. Deduce that dim $\operatorname{End}_{kG}(V)/I = 1$, hence V is local.

Exercise 10.2: Let R be a ring and M, N, E be R-modules. We say that E is an *extension* of M by N is M is a submodule of E such that $E/M \cong N$. We say that an extension E is *trivial* if $E \cong M \oplus N$.

Let k and P_{ω} be the only two irreducible simple representations of S_3 over k, with k algebraically closed of characteristic 2. Show that the projective cover P_1 of k is a non-trivial extension of k by k while there are no non-trivial extensions

- 1. of k by P_{ω}
- 2. of P_{ω} by P_{ω}
- 3. of P_{ω} by k

Exercise 10.3: Let k be an algebraic closed field of characteristic 3. Compute the dimension of the simple and of the indecomposable projective modules of kS_3 .