Noncommutative Algebra and Symmetry WS 2021/22 — Ubungsblatt 11 21.01.2021

In this exercise sheet we study *blocks* of rings.

Exercise 11.1: Let R be a ring. We say that $e \in R$ is a *central idempotent* if it is an idempotent lying in the center Z(R) of R.

- 1. Let $e \in R$ be a central idempotent. Show that Re is a two-sided ideal of R. Moreover, Re is a ring with identity e.
- 2. Show that decompositions of the $R = R_1 \oplus R_2 \oplus \ldots \oplus R_k$ into two-sided ideal are in bijection with the expressions of the form

$$1 = e_1 + \ldots + e_{\cdot}$$

where the e_i 's are orthogonal central idempotent.

3. If $R = R_1 \oplus R_2 \oplus \ldots \oplus R_k$, we also have $R \cong R_1 \times R_2 \times \ldots \times R_k$ as rings.

Exercise 11.2: We say that $e \in R$ is a *primitive central idempotent* if it is a central idempotent which cannot be written as sum of two orthogonal central idempotents.

- 1. Show that $1 \in R$ can be written in a unique way as a sum of primitive central idempotents.
- 2. There exists a unique decomposition of $R = R_1 \times R_2 \times \ldots \times R_k$ into indecomposable rings.

The indecomposable rings R_1, \ldots, R_k are called the *blocks* of R.

Exercise 11.3: Let R be a ring and M be an indecomposable R-module. Let $R \cong R_1 \times R_2 \times \ldots \times R_k$ be the blocks decomposition of R. Then $M = R_i M$ for some i and $R_i M = 0$ if $j \neq i$.

Exercise 11.4: Let G be a finite a group and k a field. Then compute the blocks of kG in terms of its Cartan matrix: if the Cartan matrix has a block diagonal form, then the blocks of the matrix are in bijection with the blocks of kG.

Exercise 11.5: Use the knowledge of the previously computed Cartan matrix to compute the number of blocks of S_3 and A_4 in characteristic p = 2 and p = 3.