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These are supplementary notes for the lecture course “Noncommutative Algebra and
Symmetry” held at the University of Freiburg during the Wintersemester 2021/22. This
material complements the main lecture notes [1]. A good reference for most of this material
is [3]. Another source I have used are the lecture notes [5].

1 Tensor product over a field

1.1 Tensor product of vector spaces over a field

Let k be a field and let V', W be finite dimensional vector spaces over k.

If {vi...,v,} and {wy,...,wy,} are bases of V and W, we can define V ®; W simply
as the vector space with basis {v; ® w;}. However, this is not very satisfactory as is not
clear how the tensor product depends from the chosen bases, so we give a more intrinsic
way to define the tensor product of vector spaces, in terms of a universal property.

Definition 1.1. Let V, W and Z be vector spaces over k. A k-bilinear map B : VW — Z
is a map that satisfies

e For any v € V' the map B(v,—) : W — Z is k-linear.
e For any w € W the map B(—,w) : V — Z is k-linear.

Definition 1.2. Let V., W be vector spaces over k. The tensor product, denoted V ®;, W
(or simply V@ W if the field is clear from context) is a vector space together with a bilinear
map —® —: V xXW — V & W such that for any B : V x W — Z bilinear there exists a
unique linear map ¢ : V® W — Z such that B=¢o (— ® —).

V xW B A
®\ %
VW

Tensor product can be thought as a tool to transform bilinear maps into linear maps.
In fact, we have

{bilinear maps V- x W — Z} = {linear maps V@ W — Z}.

We need to show that tensor product exists and are unique up to a unique isomorphism.
As usual, when an object is defined by means of an universal property the uniqueness is
rather easy to show.



Lemma 1.3. Let T and T’ be tensor products of V and W, and let B: V x W — T and
B : VxW — T be the corresponding linear maps. Then, there exists a unique isomorphism
f:T —T with B= foDB.

Proof. By the universal property there exists unique f : T — 17" and g : 7" — T such that
B = foB' and B’ = go B. We want to show that f and g are inverse to each other.

VxW B T

N

T/

For any v € V and w € W we have

B(v,w) = g(B'(v,w)) = g(f(B(v,w))

so g o f is the unique map such that B = (g o f) o B. Since also B = Idr o B we have
Idp = go f. Similarly, f o g = Idy and f and g are inverse to each other. O

Showing the existence is a more tedious task.
Lemma 1.4. Let V and W be k-vector spaces. Then there exists a tensor product V @ W.

Proof. Let T be a vector space with basis {€y w }vew,wew. We have

{maps V x W — Z} = {linear maps T'— Z}.

So for any f : V x W — Z there exists g making the diagram commute. If f is bilinear,
then we have

0= f(’U + 'Ulyw) - f(va U}) - f(vlyw) = g(eerv/,w — Eyw — ev’,w)

and similarly
g(ev,w+w’ — €Eyw T ev,w’) =0

g()\ev,w - e)\v,w) =0
g(Aev,w - ev,)\w) =0

for all v,v" € W, w,w’ € W and X € k. Let U be the subspace of T generated by all the
elements of the form e,y —€vw —€v w, €vwt+w’ —Cvw—Cvuw's MNvw = Crvws Aeyw—EyAw
for all v,v" € V, w,w’ € W and A € k. Then g factors through T/U in a unique way.
Hence, any bilinear map f : V x W — Z factors uniquely through 7/U, hence T'/U is a
tensor product. O

Exercise 1.5. We have V ®; k = V, where the isomorphism is given by v ® A — Av.
Similarly, k @, V =2 V.



We write v ® w for the image of (v,w) in V ® W. An element of the form v ® w is
called a pure tensor. Pure tensors span V' ® W, but in general there are elements not of
this form.

Example 1.6. Let V = W = C? with basis {e1,e2}. Then e; ® e; + €2 ® €1 is pure (and
equals e; ® (e1 + e3) while e; ® e1 + e2 ® ep € C? ® C? is not pure.

Tensor product is associative, i.e.
VeV eVhzWVeV)eV”
via the unique isomorphism which sends v ® (v' ® v”) to (v ®v") ® v”". Moreover, we have
Verk=V
via the unique isomorphism which sends (v ® \) to Av.
Exercise 1.7. Tensor product commutes with direct sum but not with direct products.
We can now show that our naive definition was correct.

Lemma 1.8. Let V and W be vector spaces over k with bases {v;}icr and {wj}jes. Then
{vi ® wjtierjes is a basis of V@ W.

Proof. Let U be the vector space generated by all the v; ® w;. Each bilinear map B :
V®W — Z factors in a unique way through U, so U is a tensor product and the inclusion
i : U — V ®W is the unique linear map commuting with ®, so by uniqueness of the
universal property we have i = Idygw and U =V @ W.

It remains to show that the elements v; ® w; are linearly independent. Assume there
is a linear dependency

Z Qi jV; Q@ Wj = 0.

For ig € I and jo € J let § : V@ W — k the bilinear map such that

%0,J0

1 ifi:io andj:jo
0 otherwise

5i07j0 (viij) = {

Then 0;, j, is bilinear and factors through ¢ : V@ W — k. Let D := ) a; jv; ® w;. We
have

B(D) =D i ;64 jo (Vi w5) = @iy jo-
So D cannot be 0 if at least one of the a; ; # 0. O
In particular, we have

dimg V - dimy W = dimg(V @ W).

Moreover, if {w;} is a basis of W, we can always write any element of V@ W as ) v; @wj,
for some v; € V.
For a vector space V we denote by V* its dual vector space.

Proposition 1.9. Let V' be finite dimensional over k. We have V* @ V = Endy (V) via
v* @ v vt (—)v.

Proof. Both spaces have dimension (dim V)2, so it is enough to show the surjectivity. Let
{v1,...,v,} be a basis of V and {61,...,0,} be the dual basis. Then if f: V — V a linear
map, we have f = > 0;(—)f(v;), hence f is the image of > 9; ® f(v;). O



1.2 Tensor product of algebras

Let A and B be k-algebras. Then the tensor product ARy B is in a natural way a k-algebra,
where the product is defined as

(a®b) (d @) = (ad @)

on pure tensors and extending by linearity to the whole A®y B. (One can check that this is
well defined by constructing in the usual way bilinear map from A x B. For example, right
multiplication with a’ ® b’ is induced by the bilinear map which sends (a, b) to aa’ @ bb'.)

Example 1.10. Let G and H be groups. Then kG ®y kH = k(G x H). In fact, the
bilinear map — ® — : kG x kH — kG ® kH factors through f : k(G x H) — kG ® kH,
where f is defined by f(g,h) = g ® h. We can find the inverse of f using the universal
property of the tensor product.

We can regard A and B as subalgebras of A ®; B viaa — a® 1l and b — 14 ® b.
Notice that the images of A and B in A ® B commute. In fact, the tensor product of
algebras can also be defined by means of a universal property. Let C' be a k-algebra and
let f: A— C and g: B — C be k-algebra isomorphism. Then, if f(a)g(b) = g(b)f(a) for
all @ € A and b € B there exists a unique k-algebra morphism ¢ : A ® B — C such that
the following diagram commute.

AXBLC
N, A
A®B

Example 1.11. Let V and W be finite dimensional vector spaces. Then Endg(V) ®
Endg (W) = Endg(V @ W). In fact, if A € Endg(V) and B € Endg (W), the map

(A® B)(v®w) = (Av ® Bw)

defines an endomorphism of V@ W. The map (A4, B) — (A ® B) is bilinear, hence this
induces a linear map ¢ : Endy (V) @ Endg (W) — Endg(V ® W). One can check that ® is a
morphism of algebras, for example using the universal property above. Moreover, ® is an
isomorphism: after we fix bases {v;} and {w;} of V and W, it sends the basis {E;; ® Egp, }
to the basis {E(; 1) (jn) }, where

vjQuwp ifi=14 and k=K
B my (vir @ wiy) = {Q otherwise.

1.3 Tensor product of modules

Let A be a k-algebra and let V' and W be two A-modules. In general, the tensor product
V ®r W is a module over A ®; A but there is no natural way to define a structure of
A-module on V@ W.

If V is a A-module and W is a B-module, then V ®; W is in a natural way a A ®; B
module, where the action is given by

(a®b)-(vew)=(a-v)® (b-w).



Theorem 1.12 (|1, Satz 1.7.3]). Let A and B be algebras over an algebraically closed field
k = k. There is a bijection

Irr{:‘d' (A) x Irri'd' (B) = Irrg‘d'(A ® B),

where Irrf:'d'(A) denotess the set of isomorphism classes of irreducible finite dimensional
A-modules.

In the proof we need to use the following result, which is proved in [1, Korollar 1.6.6]

Proposition 1.13 (Wedderburn’s theorem). Let k = k. Let A be an algebra over k and let
V be an A-module. ThenV is simple if and only if the corresponding map p : A — Endy (V)
1S surjective.

Proof of Theorem 1.12. Let V and W be simple modules over A and B respectively of finite
dimension over k. Then, the image of A ® B in Endg(V) ® Endg(W) = Endg(V @ W).
Hence, V ® W is simple by Proposition 1.13.

Let T'be a A® B-module finite dimensional over k. We can regard it as a A-module by
restriction. It contains a simple A-module E C T'. Notice that Hom4(E,T') is a B-module.
In fact, since the action of B on T' commutes with A, for ¢ € Homyu(E,T) we have

b-plae) =b-(a-d(e)) = (a®@Db)-dle) =a-(b-(e))

hence b- ¢ € Homy(E,T).
This makes £ ®; Hom4(E,T) a A ®; B-module and we have an inclusion of A ® B-
modules
®: FE®, Homy(E,T) =T

which sends e ® ¢ to ¢(e). Assume we know for the moment that ® is injective (we post-
pone its proof to Lemma 1.14). Then, if T is simple we have T' = F ®; Homyu(E,T),
so T is a tensor product of a simple A-module E and a B-module Hom4(F,T). How-
ever, if Homy (E,T) must be simple, since any B-submodule ' C Hom4(F,T') induces a
submodule F ®; F C T. O

As promised, we now show that @ is injective.

Lemma 1.14. Let T be an A-module and E a simple submodule such that Endy(FE) = k.
Then

¢ : F®,Homuy(E,T) =T
1S 1njective.

Notice that in this Lemma we can neglect the B-action on B. It can be easily shown
that the image of ® is the isotypic component Ty of E as a A-module, which is the sum
of all the simple submodule of T" isomorphic to E.

Ty = Z F

FCT,F~E

Proof. Assume that ®(D) = 0 for some D € E ®; Homa(F,T). We can write D as
D =73%"",v;®¢; in a way that all the ¢;’s are all linearly independent over k. We have a
morphism of A-modules

Eanﬁi:E"—>T

i=1



Since Y ¢;(v;) = 0, the morphism € ¢; is not injective. Since E™ is a semisimple A-
module, the kernel contains a simple summand isomorphic to E. So there exist a n-uple
of \; € End4(E) = k such that the composition
A i
g 8%, gn &%,
is 0, i.e. we have Y \;j¢; = 0, which contradicts the linear independence of the ¢’s. O

Remark 1.15. Lemma 1.14 can be generalized without the assumption that End 4 (F) = k.
If End4(E) = D we have

® : E ®por Homa(E,T) = Tg.

(see Section 2 for the definition of the tensor product over arbitrary rings)

1.4 Tensor product of representations

We have seen that if V and W are representations of G, then V ®; W is a kG ® kG-module,
i.e. a representation of G x GG. However, using the diagonal morphism A : G — G x G we
can also regard V ®; W as a representation of G. At the level of the group algebra kG,
this corresponds to the following structure.

Definition 1.16. Let A be a k-algebra. A comultiplication is a morphism of k-algebras
A:A— AR A. If the following diagram commutes

A

A AR A
A Idg ®A
ARA ARARA

@ A ®Ida waA

we say that A is coassociative

Using the comultiplication A, we can consider V ®; W as a module of A. The co-
associativity of A implies that if V3, V5 and V3 are A-modules, then V; ® (Vo ® Vi) =
(Vi@ Vo) ® V.

Exercise 1.17. Check directly that the map A : kG — kG ®j, kG defined by A(> " agzg) =
Y- ag(g ® g) is a coassociative comultiplication of kG.

If G is a group, the representation of G on V ® W can be simply defined as
g (vew)=gv® guw.
Lemma 1.18. Let V and W be finite dimensional representations of G, with characters
xv and xw. Then, for any g € G we have
xvew(9) = xv(9)xw(9)-
Proof. Choose basis {v;} and {w;} of V and W. If g - v; = ) ajrvg, then xv(g) = > aii.
Similarly, if g - w; = " bjpwp, then xw(g) = > bjj. Now, we have
qg- (UZ' X U)j) = Z aikbjh(vk &® wh),
k,h

hence
xvew(9) = Y aibjj = xv(g)xw(9). O
i
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Example 1.19. We know the character table of the group Sj.

Sy |0 (12) (123) (1234) (12)(34)
triv |1 1 1 1 1
sign |1 -1 1 1 1

w3 1 0 -1 -1
w3 -1 0 1 1

V2 0 -1 0 2

The representation W occurs in the natural representation of Sy on C*. From the characters
we know that W/ =2 W @ (sign). So if p: Sy — GL(W) is the action of Sy on W, defining
p'(9) = p(g)sgn(g) we obtain the action on W’. Notice that V = V ® (sign). Moreover,
V can be obtained as a summand of W @ W.

Exercise 1.20. Let V, W be representations with W of dimension 1. Show that V @ W
is simple if and only if V' is simple.
Show that if dimV > 2, then V ® V' is never simple.

Definition 1.21. Let A be an algebra with a coassociative comultiplication A. A mor-
phism of algebras € : A — k is called a counit if (Idg ®€)o A =1dg = (e®1Id4) 0 A, i.e. if
the following diagram commutes

A A AR A
A da e®Idy
AR A ARQE2AXERA
Id s ®e

If € is a counit, it induces a structure of A-module on k. The commutativity of the
diagram implies that for any A-module V, we have V@ k 2V 2k ® V as A-modules.

Exercise 1.22. Regard k as the trivial representation of a group G and let € : kG —
Endg (k) = k be the corresponding map. Show that € is a counit of kG.

2 Tensor product over an arbitrary ring

We can generalize the construction of the tensor product. Let R be a ring, not necessarily
commutative. Let M be a right R-module and N a left R-module. Let X be an abelian

group.
Definition 2.1. A balanced map B : M x N — X is a map such that
e B(m,n+n') = B(m,n)+ B(m,n’)
e B(m+m/,n) = B(m,n) + B(m/,n)
e B(mr,n) = B(m,rn)

for any m,m’ € M, n,n’ € N and r € R.



Definition 2.2. The tensor product M ®r N is an abelian group, together with a balanced
map —®— : M xN — M®gN such that for any X abelian groupandany B: M xN — X
balanced map, there exists a unique homomorphism of abelian group ¢ : M ® g N — X
making the following diagram commute

B
M x N

A A

M®RN

X

Proposition 2.3. Let M be a right R-module and N a left R-module. Then the tensor
product M ®@gr N erists and it s unique up to tsomorphism.

Proof. The uniqueness directly follows by the universal property by a standard argument
as in Lemma 1.3. Also the proof of the existence is similar to Lemma 1.4.

Let T' be the free abelian group with basis {€y, n }memnen. Take the subgroup U C T
generated by all the elements of the form

® Eyt+v',w — Evw T Evw
® Eywtw — Cvw — Cyw’

® Cyrw — Curw

for anyl v,v" € M, w,w’ € N and » € R. Then T/U is a tensor product. In fact,
the map M x N — T which sends (m,n) to e, is balanced and every balanced map
B: M x N — X factors in a unique way through 7'/U. O

Example 2.4. If N is a free R-module, i.e. N = R/ then M @ R = M.

Lemma 2.5. If M = R/I, where I is a right ideal in R, then R/I g N 2 N/(I - N)

Proof. Let B: R/I x N — X be a balanced map. Then
B(r+1,n)=B((1+I)r,n)=B(1+1I,rn)

If we define 7 : R/I x N — N/(I-N) as n(r + I,n) = rn + IN then 7 is balanced and
the diagram

R/I x N B

N
N/(I-N)

commutes, where ¢(n+IN) = B(1+1,n). Moreover, ¢ is the unique such map, so N/IN
is a tensor product. O

X

Example 2.6. If p,q € N are primes, then Z/pZ ®z Z/qZ = (Z/qZ)/p - (Z/qZ). It p = q
then Z/pZ ®z 7/pZ = 7./pZ, while if p # q then Z/pZ &7 Z./qZ = 0.



Remark 2.7. Assume that R is a commutative ring. Then we do not need to distinguish
anymore between left and right modules and M ®pg N is also an R-module itself. In fact,
the product
r-(m®n)=(men)=(mern)
defines a module structure on M ®gr N.
In particular, if R is a field, the two definitions of tensor product coincide (one can use
the universal properties to construct isomorphisms between the two objects).

More generally, let L be a ring and let M be a (L, R)-bimodule (i.e. it is at the same
a left S-module and a right R-module, or in other words it is a L ®7 R°P-module). Then,
for any left R-module N, multiplication on the left by L induces a L-module structure on
M KRR N.
z-(men)=(xm®n)foral z €L

3 Induction and restriction of modules

Let G, H be groups and let f: H — G be a homomorphism of groups. The most relevant
case will be when f is an inclusion of a subgroup.

Definition 3.1. Let p : G — GL(V) be a representation of G. Then we can regard
V' as a representation of H by precomposing with f. We call the restriction of V the
representation so obtained and we denote it by resf (V).

We want to go now in the other direction, i.e. we want to construct representation of
G starting with a representation of H. For any field k this makes kG a right kH-module,
where

g-h=gf(h) foranyge Gandhe H.
In particular, we can regard kG as a (kG, kH )-bimodule.

Definition 3.2. For any representation V' of H we can define a representation of G, called
the induced representation of V as

Coindg(V) =kG Qg V
Example 3.3. If H = {1} and V = k, then coind{ (k) is the regular representation kG.

Exercise 3.4. If G = {1}, then kG is isomorphic as a kH-module to kH/I, where I =
{Z aph € kH ‘ Zah = 0}. Then

coind (V) =k @pg V = (kH/I) @4y V = V/(I- V)
The vector space V/(I - V) is called the coinvariants of V.

Assume now that H is a subgroup of G and f is the inclusion. Recall that G/H denote
the left cosets of H in G.

G= |_| gH.
gHeG/H

We can choose a set of representatives [G/H| for G/H. Then [G/H] also gives a basis of
kG as a free right kH-module, i.e. we have

K= @ g-kH
9€[G/H]

9



Let V be a representation of H. Then

coindH @ g-kH Qg V = @ gV
9€[G/H] 9€[G/H]

where g@V:i={g®v|veV} CkG®ry V. It follows that
dimg(coind% (V) = |G/H| - dimy (V).

The action of G on indg(V) permutes the vector spaces g ® V' and moreover it is
transitive. Notice that the stabilizer of 1 ® V' is H, while in general the stabilizer of g® V'
is gHg™*

Example 3.5. If H C G and k is the trivial representation of H, then coind%’}(k:) is the
representation of G on k(G/H) induced by the action on G on the set of cosets.

Exercise 3.6. Let H C G and k be the trivial representation of H. Then coind% (k) =
kG(> ncm h). (This is for example the case of the representation M (Y") which was used
in the study of representation theory of S,,.)

Remark 3.7. If H C G and G/H is finite, there is another more geometric way in which
we can think of the induction.

coindG (V) ={f:G =V | f(gh ) =h- f(z) forall h € H, x € g}.

If f is such a function, we can define the action of g by g- f(z) = f(g~'z). In fact, we

have g - f(zh™") = f(g~'ah™!) = h- f(g~ @) = h- (g f(2)).
It can be showed that the two definitions coincide. Every function f € coindfl(V) is
the determined by the value on g, for g € [G/H]. So we send

= Z g® f(g9) € kG@ru V.
9€lG/H]

The inverse is induced by the balanced map

kG x V — coind% (V)

(z,v) — (a — (e z)v)

(If G/H is not finite, one should define coind% (V) as the set of functions which are non-
trivial only on finitely many left H-cosets.)

There is another natural way to construct representation of G starting with a repre-
sentation of H.

Definition 3.8. Consider kG as a left kH-module. Let V a representation of H. Then
ind% (V) := Homp (kG, V')

where the action of G is given by g - f(x) = f(zg). (This defines an action: hg - f(z) =
h- f(xg) = f(xhg) for all g,h € G.)

Example 3.9. If H = {1}, then ind{’(k) = kG* is the dual of the regular representation.

Exercise 3.10. If G = {1}, then ind}, (V) = Homg(k,V) = V¥, the invariants of V.

10



Proposition 3.11. Assume that H C G and G/H is finite. Then coind% (V) 2 ind% (V).
Proof. The balanced map kG x V — Hompy (kG, V') defined by

(z,v) = (a+— (ax)v)

where (az)v =0 if ax € kH and (az) - v if az € kH. This balanced map induces always a
homomorphism
® : coind% (V) — ind% (V).

If G/H is finite, we can define
U : ind% (V) — coind% (V)
vo)= > ge6(g").
9€[G/H]

We need to show that these maps are inverse to each other. We have

QUO)(a) =2 > g@0(g )| (a) = (ag)f(g™").

9€[G/H] g

By linearity, it is enough to show the claim for a € G. However, (ag)f0(g~!) # 0 only
if ag € H, i.e. if g € a=1H, so only for a single element in [G/H]. Let g € [G/H] be the
representative for a ' H, so ¢ = a~'h for some h € H. We obtain

®(U())(a) = (ag)f(g~ ') = aa " ho(h1a) = (hh~ta) = 6(a).

In the other direction, we compute

V(@)= Y g&(¢ 2w
gelG/H)

By linearity, it is enough to show the claim for 2 € G. But (¢ 'z)v # 0 only when
g x € H,i.e. only for the representative of xH. In this case we have g = xh for some h
and we obtain

1

U(P(z@v)=zhh™t v=z®w. O
Example 3.12. In the case H = {1} and G finite, we obtain an isomorphism kG = kG*.

Assume now that G/H is finite. Given a representation of H we want to compute the
character of the induced representation.

Definition 3.13. Let ¢ be a class function of H (i.e. a function ¢ : H — k which is

invariant on conjugacy classes). We define the induction of ¢ as

_ 1 _
ind57(0)(9) = 7777 2 9= g)

zeG
where we extend ¢ to 0 on G\ H.

Remark 3.14. Since ¢ is constant on H conjugacy classes, we have

ind%(¢)(g) = D (@ 'g).

z€[G/H]

Note that this formula makes sense even when H is infinite but G/H is finite.
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Proposition 3.15. We have

Xing6 vy = md%(x)

ind$ (V) H\X)-
Proof. Let x € G. We want to compute the trace of x on KGRV . Recall that x permutes
the subspaces g ® V, for g € [G/H]. To compute the trace, it is enough to look at the
g ® V which are fixed by z, i.e. such that z € gHg™!, or in other words that z = ghg™!
for some h € H,i.e. h =g lzg € H.
We want to compute the trace of x on ¢ ® V. We have

z-(g®v)=2g@v=9gh®@v=9g® (h-v) € kG Qg V.

Therefore, the trace of z on g ® V is the same as xv (k) = xv (g~ 'zg). Hence,

Xinag (vy (%) = > wigmzg) = > xvig'zg) = ind%(xv)
9€lG/H),g~ 'xgeH 9€[G/H]
where in the second equality we have extended xy to 0 on G\ H. 0l

Example 3.16. Let V the standard representation of S3 with character given by

Ss |0 (12) (123)
Vi o0 -l

We regard S5 as the subgroup of Ss of permutation fixing 4. We can choose the following
set of representatives

[54/ 93] = {id, (14), (24), (34)}.
Let ¢ = indg!(yv). Then
° ¢
° ¢
* ¢
° ¢

One can easily check that we have

id) = [S4/Ss|xv (id) =4-2 =38
(12)) = 0 since xv (t) = 0 for all transpositions ¢.

(123)) = xv((123)) = —1, because all other conjugates are not in Ss.

~—~~ o~~~

(1234)) = ¢((12)(34)) = 0 because all conjugates are not in Ss.

indg! (L(] ye L) e L )

|

In general, the coinduction is bigger then the induction, but they coincide if G/H is
finite.

[]

Exercise 3.17. If G is finite then the map V — V defined by v — Zg g-v induces a map
Ve — V&, Show that if char k = 0, this map is an isomorphism.

Theorem 3.18 (Frobenius reciprocity). Let N be a H-module and M a G-module. Then,
we have natural isomorphisms of abelian groups

Homy (N, res& (M)) 2 Homyg (coind$ (N), M).

Homy g (resZ (M), N) 2 Homye (M, ind% (N)).

This means that induction is right adjoint to restriction, while coinduction is left adjoint
to restriction.
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Frobenius reciprocity is a consequence of a more general statements about modules of
rings.

Theorem 3.19 (Tensor-Hom adjunction). Let M be a left R-module and N be a left S-
module. Let X a (S, R)-bimodule. Then we have a natural isomorphism of abelian groups

Homp(M, Homg(X, N)) = Homg(X ®g M, N).

Proof. Let ¢ : M — Homg(X, N) a morphism of R-modules. This induces a R-balanced
map X X M — N defined by

(z,m) = ¢(m)(x).

So, by the universal property of the tensor product, we obtain a map % X ®r M — N.
It’s easy to check that ¢ is a map of S-modules. We claim that ¢ — ¢ gives the desired
isomorphism. In fact, we can define an inverse by taking f: X g M — N to f': M —
Homg (X, N) defined as f/(m)(z) = f(x @ m). O

~Y

Proof of the Frobenius reciprocity. We can deduce the desired statement since resg (M) =
kG @y M if we think of kG as (kH, kG)-module and resZ (M) = Homy (kG, M) where
we regard kG as a (kG, kH )-bimodule. O

Example 3.20. Agssume we are in characteristic 0. Let H C G be finite groups. Let L
be an irreducible representation of H and M an irreducible representation of G. Then M
occurs inside ind% (L) if and only if L occurs inside M

In particular, if k is the trivial representation of H, an irreducible representation M of
G occurs in ind% (k) if and only if M # 0.

Example 3.21. Let Y be a Young diagram. Then M(Y) = indgy (k) where C is the
column stabilizer and k is the trivial representation of C' (cf. Exercise 3.6). It follows
that the irreducible representations L which are summands of M (Y') are precisely those
for which LE # 0.

If char k£ = 0, we can rephrase Frobenius reciprocity in terms of characters. If H C G,
and xyv is a character of G, we define resZ (x1/) to be the restriction of yy to H. By
definition, we have

Xresg(v) = resg(xv>‘
Corollary 3.22. Let M be a kH-module and N o kG-module, with chark = 0. Then
(indf (xar), xv) = (xar,res¢ (xn))

Proof. Let V and W be representations of a group G, which decompose into simple rep-
resentations as V = @L;" and W = EBLE”. Then the orthogonality relations tell us
that

(Xv,xw) = zaibi = dim Hom(V, W).

The corollary follows from Theorem 3.18. O
Remark 3.23. From Frobenius reciprocity we get

Homy g7 (N, resZ (coind% (N))) = Homye(coind% (N), coind% (N))),
hence the identity of coind% (N) gives a natural morphism

N — resZ (coind% (N))

13



n—1®n

Similarly, we get a natural morphisms
coind% (resf (M)) — M

M — ind (resZ (M)

resd (ind%(N)) = N

4 Clifford theory

In this section we assume that G is a finite group and that N C G is a normal subgroup.
Clifford theory allows us to link the representation theory of G to the representation theory
of N using the restriction and induction functors.

Definition 4.1. Let V' be a representation of N defined as p : N — GL(V). Then we
denote by V9 the representation of p9 : N — GL(V) defined by p?(n) = p(g~'ng).

Notice that V is simple if and only if V¢ is simple. In fact, if W C VY is a subrepresen-
tation, then also W9 ' C V is. Then there is a G-action on the set of finite dimensional

irreducible representation of Irrg'd'(N) by g-p = p?. In fact, we have h-g-p = (p9)" = ph9.

Remark 4.2. We have already seen that ind§ (1) decomposes as a direct sum of g @ W,
for g € [G/N]. Recall that g ® W is a gNg~!'-representation, so a N-representation since

N is normal. Moreover, g @ W = W9 as N-representations, with the isomorphism given

by ¢ ® w > w. In fact n(g @ w) = g(g 'ng) ®w = g ® (¢~ 'ng)w

Theorem 4.3 (Weak form of Clifford’s theorem.). Let V' be a finite dimensional simple
G-representation over k. Then resg(V) 15 semaisimple.

Proof. Since V is finite dimensional, we can find a simple N-subrepresentation W C
resly (V). For any g € G also gW is a subrepresentation of N. In fact, we have

n-gW =g(g 'ng) - W = gW.

Moreover, gW is simple: in fact it isomorphic to W9. To show that resg (V') it remains
to show that V = Zg gW. But Eg gW is a G-representation, and since V is simple, we
must have V =3 gW. O

Theorem 4.4 (Strong form of Clifford’s theorem). Let N be a normal subgroup of G and
V' a simple G-representation. Let

resy (V) = S9 @ 5% ... @ Sor

the decomposition resg(V) into isotypical N -representations (i.e. S; are simple and S; 2 S;
if i # j). Then the following holds:

1. G acts transitively on the set of N-isotypical components.

2. We have a1 = ag = ... = ay, and dimg(S1) = dimg(S2) = ... = dimg(Sm)

14



Proof. Since resY (V) is semisimple we can write it as S7* & S52... @ S%m. (S can be
defined as the sum of all the submodules isomorphic to S;.)

For ¢ € G we have that ¢(S;") is a sum of a; copies of gS;, which is simple and
isomorphic to SY. So we have ¢S; = S; for some j, and we deduce a; < a;. Similarly, since
g71S; = S;, we must also have a; < a;, hence a; = a;. Moreover, deGg(SZf“) is stable

under the G-action, so
D g(si) =5

geG

and we see that the action is transitive, i.e. for any j exists g € G with ¢S;" = S’;j, so (2)
follows. O

If V' is a simple representation of GG, then the irreducible representation occurring in
resy (V) form a single G-orbit in Irry(N).

If V € Irrg(N), we denote by Gy the subgroup of g € G for which V9 = V. Clearly,
N C Gy for any V € Irrg(N).

Definition 4.5. The group Gy is called the inertia group of V.

Let V and S7* be as in Theorem 4.4. Then we know that for any ¢ € G we have
g(STY) = STt or g(ST') N STt = 0. In particular, we have g(S7*) = S7* if and only if
S1 2 57. In particular, the group Gg, is the stabilizer of S7*.

Lemma 4.6. Let V and S7* be as in Theorem 4.4. Then ST* is simple as a representation
of G1 := Gg, and we have
V= coindgl(Sfl).

Proof. We can define a homomorphism
® : coindd (S§") = kG @y, S7* =V

gRUig-v
which is a morphism of kG-modules. We have a decomposition
kG @, S7 = @ g SP
9€lG/Ghl

Similarly, we have V = ®96[G/G1] g(ST"), since the action of G is transitive and we conclude
since ® induces isomorphisms
:ig®SP = g(sP)

for any g € [G/G4].
This also shows that S7* is simple for G1. Otherwise, any subrepresentation W C S{*
would induce a subrepresentation coindgl(W) of V.. O

For x € Irry(N), let Gy be the stabilizer of x, i.e. the inertia subgroup of x. Let
Irr} (Gy) be the set of isomorphism classes of irreducible representations of G, such that
when restricted to N decompose as a direct sum of x.

Definition 4.7. Let

Par(G,N) :={(x,W) | x € Irr(N), W € It} (G, )}
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There is an action of G on the set Par(G, N). In fact, for (x, W) € Par(G, N), we can
define g - (x, W) := (x9, WY). where W9 is the representation of

Gyo={heG|x 2x"}={h|g 'hg € Gy} = gG\g™"

defined by gzg™' - w = zw.

Theorem 4.8 (Clifford’s correspondence). We have a bijection
Irry(G) & Par(G,N)/G
where Par(G,N)/G is the set of G-orbits in Par(G, N).

Proof. We define a map F : Irry(G) — Par(G,N)/G by sending V € Irri,(G) to (S;, Si")
as in Theorem 4.4. Since all the (S;, S{*) are in the same orbit, this is well defined. We
can now construct

G : Par(G,N)/G — Irri,(G)
(x, W) — coindg_(W).

We have already seen in Lemma 4.6 that GF(V) =V for all V' € Irry(G).
In the other direction, assume (x, W) € Par(G, N). We want to show that FG(x, W) =
(x, W). Let V := coindgx (W). It decomposes as direct sum of g @ W for g € [G/G,], so

all the components in resg (V) are of the form x9. Let V) be the isotypic component of x
in V. Frobenius reciprocity induces a morphism

W — rescX(V) = kG @y W

w—1®w
which induces an isomorphism W — 1@ W =V,. In fact, g@ W 2 W for g € G. O

4.1 Applications of Clifford’s theory: Subgroups of index two

Assume that N C G is a subgroup of index 2, i.e. G/N = {1, h} has two elements. In this
case N is automatically normal.

We can always define a representation e of dimension 1 by pulling back the non-trivial
representation of G/N = Z/2Z. In other words,

{1 ifge N

W= igen

Proposition 4.9. Let k be a field of characteristic 0. Let L be an irreducible representation
of G. Then we have one of the following possibilities:

o L2 L ®candres(L) =S @ S" with S irreducible, S % S" and Gg = N
o L# L®c and resd (L) is irreducible and Gg = G

Proof. Notice that since €(g) = 1 for all g € N we have resY (L ® €) = res (L). Moreover,
we have L 2 L ® e if and only if their characters are equal, i.e.

L2L®e < x1(9) =xr(9)e(g) forall g€ G <= xr(g) =0forallge G\ N
We have a decomposition

resh(L) =S¢ @ ... @ SL.
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Let G the stabilizer of S{. Then we have either G; = N or G; = G.
Assume G'; = N. Then, S{ is simple over G1 = N, in particular a = 1 and ind%(Sl) =
L. Hence, dim L = 2dim Sy and res) (L) = S1 @ St for h ¢ N. By Frobenius reciprocity,
we also obtain ind§/(S;) 2 L ® ¢, so we must have L = L @ e.
Assume now G = G, so that resY (L) = S®. By Frobenius reciprocity we have that L?
is a summand of ind§(S). So
dim L

adimL <2dim S =2 ,
a

soa?<2anda=1
This implies that

1 = (vesgy (L), resgy (xz)) = Uif > xw(n)xo(n) # |1N| > xeloxelg) =2 (1)
neN geG

From the inequality in (1) follows that exists ¢ € G \ N such that x1(g) # 0, hence
L % L ® e. By Frobenius reciprocity, ind$(S) contains L and L ® € as summands, and by
dimension considerations we have

ind$(S) 2 Lo (Lee). O
So in this case we have a bijection between
Irre (N)/(V ~ V) 2 Irr(G) /(W ~ W @ €)

An important example is the alternating subgroup A, C S,. In this case € is the sign
representation. Recall that the irreducible representations of S, are the Specht modules
L(Y), for Y a Young diagram. We have L(Y)®e = L(Y"), so L(Y) = L(Y) ®e if and only
it Y is symmetric with respect to the diagonal. So if Y is symmetric, then resé: (L(Y))
decomposes as two irreducible representations of A,, while if Y is not symmetric than

resé: (L(Y)) = TeSg:(L(Yt)) is irreducible.

Exercise 4.10. Show that the number of symmetric Young diagram for S, is equal to the
number of conjugacy classes in S, that split into two classes in A,

4.2 Applications of Clifford theory: Representations of p-groups

Theorem 4.11. Let G be a group with |G| = p®. Then, every irreducible representation
of G is the induction of a representation of dimension 1 of some subgroup H C G.

Before we start with the proof, we need the following Lemma about p-groups.

Lemma 4.12. Let G be a non-abelian p-group. Then G has an abelian normal subgroup
A such that A ¢ Z(G).

Proof. Recall that any p-group has a non-trivial center. Since G is not abelian, the group
G/Z(G) is not trivial. In particular, Z(G/Z(G)) # 0, so we can take id # x € G such that
xZ(QG) is central in G/Z(G).

We can construct A as the group generated by Z(G) and x. The group A is abelian,
since Z(G) is abelian and commutes with . Moreover, it is normal: for any g € G we
have grg~! € ¢Z(Q)x2Z(G)g ' Z(G) = 2Z(G), so grg~' € A. O
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Proof. If GG is abelian the statement is trivial since all irreducible representations of G
have dimension 1. So we can assume a > 1 and G not abelian. We show the theorem by
induction on a.

Let S be a simple representation of G, and let pg : G — GL(S) be the corresponding
group homomorphism. Let N = Ker(pg) be the subgroup of elements acting trivially on
S. If N is not trivial, then S descends to a representation of G/N and we can conclude by
induction. In fact, we have

N N . G/N ~
S = resg/N(S) = resg/N(lndHéN(V)) =~ ind(V),

where H is a subgroup containing N and V is a one-dimensional representation of H.

Assume now that N is trivial, i.e. that pg is injective. There exists an abelian normal
subgroup A of G which is not central (we show this in Lemma 4.12). By Clifford’s theorem,
we have a decomposition

resg(S) = SN @ S @ ... S,

Let G be the stabilizer of ST*, so S7* is a simple G-representation and S = indgl(S?l).
If G; 2 G, then we conclude by induction, S{* = indgl(V) for some subgroup H.

If G1 = G, then resé(S) >~ S7'. But A is abelian, so S} is a one-dimensional rep-
resentation of A. This means that on S, the subgroup A simply acts as multiplication
by a scalar. In particular pg(A) commute with ps(G) and since pg is injective we have
A C Z(G), against the assumption. O

Example 4.13. Let V the unique irreducible2-dim representation of D4. Let R = (r) be
the subgroup of Dy of rotations. Then resﬁl(V) = ¢; D e_;, where ¢, is the rep. of R which

sends r to a. Then imdg4 (gi) = indg4 (e_i) =V

5 The Jacobson radical

Let R be a ring, not necessarily commutative. For a R-module M, we say that x € R acts
trivially on M if r-m = 0 for all m € M.

Definition 5.1. The Jacobson radical J(R) is the subset of elements of R which act
trivially on any simple R-module.

The Jacobson radical is the intersection of all the kernels of the ring homomorphisms
f:R— Endr(M)
for M simple, so it is a two-sided ideal.

Lemma 5.2. The Jacobson radical J(R) is the intersection of all the mazimal left ideals
of R.

Proof. All the simple modules are of the form R/I, for I maximal left ideal, so J(R) is
contained in the intersection.

On the other direction, for any simple module M and any 0 # m € M the kernel of
f:R— M, f(r) = rm is a maximal left ideal. So if @ € R is in all left maximal ideals,
then a acts trivially on any m. O

Example 5.3. If k is a field, and R = k[z]/(2?), then J(R) = (z).
If k is of char p, then kC), = k[z]/(2P — 1) = k[z]/(x — 1)? and J(R) = (z — 1).
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An element of a ring R is invertible (or unit) if it has a left and right inverse. If x € R
is invertible, then its left and right inverse coincide.

Lemma 5.4. An element © € R is in J(R) if and only if 1 — rxs is invertible for all
r,s € R.

Proof. Assume that 1 —ras is always invertible and that x ¢ I for some maximal left ideal
I. Then Rt + 1= R,s0 1 =rx+ a for some r € R and a € I. But a cannot be invertible
and we get a contradiction.

Let now x € J(R). Also zs € J(R). If 1 —rzs is not left invertible, then it is contained
in a maximal left ideal I, which cannot contain xsas1=1—ras+r-xzs ¢ I. But xs € [
by Lemma 5.2, so 1 —rxs is left invertible. Let u be its left inverse, so u(1 —rzs) = 1. We
have u = 1 — (—ur)(xs) is also left invertible, so w is invertible and (1 — rzs)u = 1. O

Example 5.5. Let k be a field. Then J(k[x]) = 0. In fact, if 1 — f is invertible, then f is
a constant.

Lemma 5.6 (Nakayama’s Lemma). Let M be a finitely generated R-module. If J(R)M =
M then M = 0.

Proof. Assume M # 0 and let mq,...,m, be a minimal set of generators. We have
mp =y, rym; with 7; € J(R). Hence

n—1
(I —ry)my = mel
i=1
Since (1 — ry,) is invertible, this contradicts minimality. O

6 Criterium of semisimplicity

Lemma 6.1. Let R be a ring of finite length as a module over itself. Then J(R) is a
nilpotent ideal, i.e. J(R)N =0 for some N.

Proof. The series of ideal R D J(R) C J(R)? C ... must be finite. So there exists N such
that J(R)¥+! = J(R)N and we can apply Nakayama’s lemma. O

In particular, J(R) consists of nilpotent element.

Lemma 6.2. Let I be a left ideal consisting of nilpotent elements. Then I acts trivially on
any simple module. In particular, J(R) is mazimal among left ideals consisting of nilpotent
elements.

Proof. Let L be a simple R-module. Assume that IL # 0. Then there exists m € L such
that I'm # 0. But Im is a R-submodule, so I'm = L. Hence, there exists x € I such that
xm = m. But this contradicts the fact that x is nilpotent. O

Lemma 6.3. Let R be a ring of finite length as a module over itself. Then R/J(R) is
semisimple.

Proof. Notice that R/J(R) is semisimple as R/J(R)-module if and only if it is semisimple
as R-module.
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Since R is of finite length, J(R) is the intersection of finitely many maximal left ideals
(otherwise, we would get an infinite series). So J(R) = (\;_; M;. We have an injective
morphism of R-modules

R/J(R) — R/My®R/My& ... & R/M,.
The RHS is semisimple, and any submodule of a semisimple module is semisimple. O

In particular, if J(R) = 0 if and only if R is semisimple. In fact, if R is semisimple we
have a decomposition R = J(R) @ M, then 1 =  + m with z € J(R) and m € M. But
m € 1 — z is invertible by Lemma 5.4. So M = R and J(R) = 0.

Consider now a field k£ and a finite dimensional k-algebra A.

Definition 6.4. We can define a k-bilinear form on A by
(a,b)er =Tr((a)o(b): A— A).
We call this the trace form.

Clearly, (a,b)y = (b,a)y and (a,b)y = Tr((ab-)), so for any a,z,b € A. As usual, we
assume A to be associative. It follows that (az,b) = (a,xb).

Lemma 6.5. The radical of the trace form is a two-sided ideal containing the Jacobson
radical.

Proof. Let R(A) be the radical. If a € R(A), then also (ax,b) = (a,xb) =0, so ax € R(A).
Similarly, if b € R(A) also xzb does.

Since A is finite dimensional, it is of finite length. Hence any element in J(A) is
nilpotent, and the trace of a nilpotent operator is 0. So J(A) C R(A). O

It follows that if the trace form is non-degenerate, i.e. R(A) = 0, then A is semisimple.
In characteristic 0 also the inverse holds.

Theorem 6.6. Let A be a finite dimensional k-algebra, where k is a field of char 0. Then
J(A) = R(A). In particular, A is semisimple if and only if the trace form is non-degenerate.

Proof. An endomorphism f of a vector space is nilpotent if and only if T'r(f™) = 0 for
all m > 0 (this is because in char 0, the polynomials p; = 2} + 2% + ... + 2!, generate all
symmetric functions, so the characteristic polynomial of f must be T™).

Let now a € R(A). Then for all m > 0, we have (a,a™); = 0, so the element a is
nilpotent. It follows that R(A) is a left ideal of nilpotent elements, so R(A) C J(A) by
Lemma 6.2 O

Example 6.7. If A € M, (k) then Tr(A-) = nTr(A). If A is nilpotent and A # 0, then
we can put A in a triangular form, with 0 on the diagonal and Aj2 = 1. Notice that
EynA=Fyand Tr(E1) =1,s0 A€ R(A) and R(A) = J(A) = 0.

Consider now the algebra T' of upper triangual matrices. If x is nilpotent, and y € T
then also zy is nilpotent. Hence the nilpotent matrices are precisely the elements of R(T).
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7 Local rings and Krull-Schmidt Theorem

Let R be a ring, not necessarily commutative.

Definition 7.1. We say that R is local if the non-units in R form a two-sided ideal.
If R is commutative then R local if and only if R has a maximal ideal.

Lemma 7.2. A ring R is local if and only if it has a unique mazimal left ideal.

Proof. Let N := R\ R*. Every proper left ideal is contained in N.

In the other direction, if M is the maximal left ideal, then M = J(R) is the Jacobson
radical. Recall that J(R) is two-sided. If x ¢ J(R), we have R = Rx + J(R), so there
exists 7 € R and ¢ € J(R) such that 1 = rz + ¢. By Lemma 5.4, rz =1 —c¢ € R*, and
so x has a left inverse | with iz = 1. Now, [ ¢ J(R), otherwise also lx € J(R). Hence
R = Rl + J(R) and also [ has a left inverse y with yl = 1. Since y = y(lz) = (yl)x = = we
get lx =xl =1and x € R*. O

Remark 7.3. If R is local, then R\ R* is the Jacobson ideal of R and R/J(R) is a division
ring. In fact, if x ¢ J(R), exists r € R such that 1 =rz + J(R).

Lemma 7.4 (Fitting’s Lemma). Let M be an indecomposable R-module with a composition
series. Then f € Endg(M) is either invertible or nilpotent.

Proof. We can consider the two series of submodules
M D f(M)D f2(M) D f3(M) C ...

Ker(f) C Ker(fz) C Kel"(f3>

By the Jordan—-H&lder theorem, both series can contain only finitely many submodules,
hence they both stabilize.

Let N such that Im(f*) = Im(f") and Ker(f*) = Ker(f") for all k > N. We claim
that M = Im(fN) @ Ker(fV). If y = fV(z) and fN(y) = 0 then f2N(z) = 0. So
z € Ker(f?V) = Ker(fV) and y = 0. So the intersection is trivial. Take now z € M.
There exists x € M such that f2V¥(z) = fV¥(z). Then we have

2= (2= (@) + ¥ (x) € Ker(fY) + Im(f").

Since M is indecomposable then M = Im(fV) and Ker(fV) =0, or f¥ = 0. In the
first case f is bijective, in the second is nilpotent. O

Corollary 7.5. Let M be a R-module with a composition series. Then M is indecompos-
able if and only if Endg(M) is local.

Proof. Assume that M is indecomposable. Then, any element in Endgr (M) is either nilpo-
tent or invertible. We show that the set of nilpotent elements N are a two-sided ideal (so
Endgr(M) is local).

Let z,y € N. If r € R then rz and xr cannot be invertible, otherwise also = is. We
want to show that z +y € N. If z + y is invertible, then exists z = (z +y)~!. But 2z and
yz are nilpotent, and

vz=1-yz=(1+(y2) + )" +... + (w2)") 7,

so xz should also be invertible. This is a contradiction! So z+y € N and N is a two-sided
ideal.
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Assume now M is decomposable, so we have M = M; & My. Then idy,,idy, €
Endg(M) are not invertible. Since idy;, = 1 — idp, we get that idys, ¢ J(Endgr(M)). Tt
follows that Endr(M) \ Endg(M)* # J(Endgr(M)), so by Remark 7.3 Endg(M) is not
local. O

Theorem 7.6 (Krull-Schmidt theorem). Let M be a R-module with a composition series.
Assume we can write M as

MM &My®...M, <M ®&Msd...Mj

with M; and M]’ indecomposable R-modules. Then k = h and there ezists a permutation o
such that M; = Mc’r(i) for any i.

Remark 7.7. If M has a composition series, we can always write M as direct sum of
indecomposable modules: If M is indecomposable we are done, otherwise write M =
My & M{ and if M; is not indecomposable My = My @ MY}, but this has to eventually
finish.

Before we prove Krull-Schmidt theorem, we need some preliminary Lemmas.

Lemma 7.8. Let M, N be R-modules. Then M is a summand of N if and only if there
exists f : M — N and g : N — M morphism of R-modules such that gf € Endg(M) is
tnvertible.

Proof. Since gf is bijective, then f is injective and Im(f) = M. We claim that N =
Im(f) @ Ker(g).

Their intersection is trivial: if x € Im(f) N Ker(g), then = = f(y) for some y and
g(z) = gf(y) #0. Let ¢ = (¢f)~'. Then we can write x € N as

z = fog(x) + (z — fog(x)) € Im(f) & Ker(g).

In fact, g(x — fog(x)) = g(x) — gf(9f)g(z) = g(x) — g(x) = 0. m

Lemma 7.9. Let M and N be R-modules both having a composition series and such that
(M) = £(N). Let f: M — N be an injective morphism of R-modules. Then f is an
1somorphism

Proof. Let 0 C My C ... C M,, = M be a composition series of M with n = ¢(M). Then
f(My) C ... C f(My,) C N is also a series of submodules of N, and f(M;) C f(M;41) since
f is injective. Since ¢(N) = n, we deduce that f(M,) = N and f is also surjective. O

Proof. Let ¢;, ¢ be the inclusion of the summands M; and M} and ;, 7 the corresponding
projections. Let p; ; be the composition

@i i ;9 T
M; = M =5 M} — M = M; € Endg(M,)

We have Zj pij = Idyg,. By Fitting’s lemma, at least one of the p; ; must be invertible,
say p1,1. Notice that this implies that M; is a summand of M| by Lemma 7.8, hence
M, =2 M.

One can check that also (3 ;55 7}) o (3,59 ¢:) is also an isomorphism and we can
conclude by induction. In fact, they have the same length since M; = M] and it is enough
to show injectivity by Lemma 7.9.
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Assume that (3,55 7)) 0 (D259 #:)(0,a2,...,an) = 0 for some az € Ma, ..., an € M.
Then (3,5 %i)(0,a2,...,ay) is contained in the summand Mj but the projection to M;
of (0,az2,...,ay) is zero. In other words, we have

7T1¢/17T/1 Z¢, (O,ag,...,an):m Z(b, (0,&2,...,an):0,

i>2 i>2

but m1¢) is an isomorphism, hence 7} (Zi>2 gf)i) (0,a,...,a,) =0. O

Example 7.10. Consider R = M, (k) as a module over itself. Then M, (k) decomposes
as R=RE11® RFEy...®... RE,,, where Ej; is the matrix with 1 on the ¢th entry in the
diagonal and zero everywhere else. The idempotents Ej; are orthogonal to each other and
1=>" E;. The decomposition is not unique.

Ifn=2then R=R (8 i) DR ((1) _01) However, Krull-Schmidt theorem assures
that the summands in the different decomposition are isomorphic (in this case they are all
k2.

7.1 Representation of a cyclic group in characteristic p

Let G =Cp = (g | g?). Then kG = k[z]/(aP — 1) = k[y]/(y?) where y =z — 1. So a kG-
module M is the same as a vector space M together with an endomorphism f: M — M
such that fP = 0. We can put f in the Jordan form. Then all the Jordan blocks of f have
eigenvalue 0. The condition y” = 0 implies that all the blocks have dimension at most n.
The decomposition into Jordan blocks induces a decomposition of M into submodules.

So the indecomposable kG-module are Vi,...,V,. On V, g acts as the Jordan block
of dimension k

1 1
1
Thanks to the Krull-Schmidt theorem, we know that every kG-module can be written

in a unique way as a sum of the V;. Notice that we have morphism V; — V; and V; — V;
even when i # j.

Remark 7.11. Cyclic groups are the only p-groups for which we have finitely many classes
of indecomposable. In fact, if G is not cyclic, it contains a subgroup isomorphic to Cy, x C,.
A representation of C), x C) is basically a pair of commuting endomorphism f, g such that
fP=g"=0.

For example, we can define an indecomposable representation as follows. Let Va,41 be
a vector space with basis v, ..., v, w1,...,w, and let f(w;) = vi—1, f(v;) =0, g(w;) = v;
and g(v;) = 0. Then f2=g¢?=0and fg=gf =0.

Exercise 7.12. Show that V3,41 is an indecomposable representation of C, x C,,

8 Projective modules and idempotents

Let R be a ring.
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Definition 8.1. A R-module P is said projective if it is a summand of a free R-module.

Proposition 8.2. A R-module P is projective if and only if every surjective morphism
f: M — P splits, i.e. there exists g: P — M such that fg = Idp.

Proof. Assume that every surjective map to P splits. There exists a free module R* and
a surjective map 7 : Rl — P (just take {m(z;)}ics to be a set of generators of P). Then 7
splits, so P is projective.

Assume now that P is projective, so exists a free module R such that R = P & P'.
Let 7: RT — P and s: P — R! be the projection and the inclusion of P. Let f: M — P

be a surjective morphism.
sl
RN

RI

Then we can define a morphism g : Rl — M making the diagram commute. If {z;};cs
is a basis of R!, then we define g(z;) = m; with m; € f~(m(z)). We have fg(x;) =
f(m;) = m(x;), so fg = m. Now we can find a section s’ of f by defining s = fgs. In
fact, s'(p) = fgs(p) = ms(p) = p. -

Lemma 8.3. Let M, N, P be R-modules with P projective. Let f : M — N andg: P — N
be morphisms, with f surjective. Then there exists v: P — M such that fy=g¢g

Proof. Since P is a summand of a free module R! with basis {z;};c;, we have maps
7: Rl — Pand s: P — R! and we can define a morphism & : R — M by 6(x;) = m;

with m; € f~1(g(m(x;))).
N
XT
[

So we can define v : P — M as v := ds. For p € P we have

fy(p) = fos(p) = gms(p) = g(p). O

Corollary 8.4. If P is projective, the functor Hom(P, —) is exact. In other words, if
N C M is a submodule, then

Hom(P, M/N) = Hom(P, M)/ Hom(P, N)
Proof. Composition induces two maps
Hom(P, N) L5 Hom(P, M) % Hom(P, M/N) 2)

Clearly f is injectve, and g is surjective by Lemma 8.3. Moreover, ¢ € Hom(P, M) belongs
to Ker(g) if and only if Im(¢) C N, i.e. if ¢ € Im(f). It follows that Hom(P, M/N) =
Hom(P, M)/ Hom(P, N). O
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A sequence as in Equation (2), where f is injective, g is surjective and Ker(g) = Im(f)
is called a short exact sequence. An exact functor is a functor which sends short exact
sequences to short exact sequences.

Definition 8.5. An element 0 # e € R is called idempotent if e? = e.
Two idempotents eq, es are called orthogonal if ejes = 0 = ege;.

Remark 8.6. 1 € R is an idempotent. If e € R is idempotent, then (1—e) is an idempotent
orthogonal to e.
If €1 and es are orthogonal, then also e; 4 e3 is an idempotent.

Lemma 8.7. Let e € R be an idempotent. Then Re is a projective module. All the
projective modules which are summand of R are of this form.

Proof. We have R = Re @ R(1 —¢). Infact 1 = e+ (1 —¢e) € Re+ R(1 —e) and if
x € ReNR(1 —e) then z = xze = ze(l — e) = 0. So Re is projective.

If P is a summand of R, then R = P& P’ for some module P’. We have 1 = e+ ¢’ with
ec€ Pand ¢ € P'. We have P = Re. In fact, if p € P then p = pe + pe/, so p = pe € Re

and pe’. In particular, e = e? so e is an idempotent. O

Proposition 8.8. Let R be a ring. Then we have a bijection

I

idempotents {e1, ..., ex}

sets of orthogonal {
withe; +...+e, =1

decompositions of R-modules
{e1,...,ex} — R= Re; @ ... D Rey

Proof. Let {e1,...,er} be a set of orthogonal idempotents with > e; = 1. Then
Re = Rey+...Re 2 1.

We need to show that the sum is direct. If Rey N (D, 4 Re;) # 0 we have
Tr1€1 = Z €T;€4
>1

then multiplying by e; on the right we get x1e; = 0.
The map is injective: if Re;®...® Rey, and Re| @...® Rej, are the same decomposition,
then Re; = Re’; for some j. In particular,

/ /
E eielzloelzelzel-lzg e1€;
) 7

and eje; € Re}. Since e; € Reg», we must have eje, = 0if i # j and e; = ele;. Similarly,

we have ee; =0if i # j and e}el = e;. It follows that e; = e;-.

It remains to prove the surjectivity. Consider a decomposition
R=L1®...0 L.

We can write 1 = ) e; with ¢; € L;. Thene; =e;-1 =) eje; € L; and ejej € L. It
follows that e;e; = 0 if 7 # j and e? =e;. So {e1,..., e} are orthogonal idempotents. [J
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Corollary 8.9. Let e € R and idempotent and L = Re. Then we have a bijection

~

idempotents {e1,...,ex} p =

sets of orthogonal {
wither+...te,=c¢€

decompositions

{e1,...,ep}— Re > Re; @ ... D Rey,

Proof. 1f {ei, ..., e} are orthogonal idempotents with ) e; = e, then

ei(l—e) :ei(l—Zei) :ei—ef =0,

)

so also {eq,...,ex, 1 — e} are orthogonal.

On the other hand, we have R = Re® R(1—e),s0if L1 ®...® Liy1 is a decomposition
of Re, then L1 & ...® L1 ® R(1 — e) is a decomposition of R.

So we conclude by Proposition 8.8. O

Definition 8.10. An idempotent is called primitive if it is not the sum of two orthogonal
idempotents.
An idempotent is called central if e € Z(R).

Corollary 8.11. The following are equivalent:
1. The module Re is indecomposable
2. e 1s primitive
3. The unique idempotent of eRe 1is e.

Proof. We have already seen in Corollary 8.9 that 1 and 2 are equivalent.

Recall that Homp(Re, Re) = (eRe)P. If Re = M & M’, then Idys and Idyy gives two
idempotents of (eRe)??, so (3) = (1).

Viceversa, if e # € € eRe, so € = exe for some x, we have ¢'e = exe = e€’, so ¢ and
e—e¢’ are orthogonal idempotents and Re = Re’®R(e—¢’). It follows that (1) = (3). O

9 Radical of a module

Let R be a ring and M be a R-module.

Definition 9.1. The radical rad(M) of M is the intersection of all the maximal submodules
of M.

Example 9.2. If R is regarded as a module over itself, we have rad(R) = J(R).

Proposition 9.3. Let R be a ring of finite length over itself and M an R-module. We
have rad(M) = J(R)M and rad(M) is the smallest submodule such that M/rad(M) is

semisimple.

Proof. M/J(R)M is a module over R/J(R). Recall by Lemma 6.3 that R/J(R) is semisim-
ple, so M/J(R)M is also semisimple.

Assume that N is a submodule of M such that M/N is semisimple. Recall that by
Definition 5.1, J(R) acts trivially on simple modules, so acts trivially on M/N. Hence
J(R)M C N. Tt follows that J(R)M is the smallest submodule such that M/J(R)M is
semisimple.
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It remains to show that J(R)M = rad(M). Let N be a maximal submodule of M.
Then M/N is simple, hence J(R)M C N. So J(R)M is contained in all the maximal
submodules, hence J(R)M C rad(M). On the other hand, since M/J(R)M is semisimple,
the intersection of maximal submodules of M/J(R)M is zero, so J(R)M =rad(M). O

Definition 9.4. The head hd(M) of a module M is M/rad(M), the largest semisimple
quotient of M.

Example 9.5. Let G be a p-group and k be a field of characteristic p. Then J(kG) =
IG ={}"agg|> ay =0}. In fact, k is the unique simple kG-module and J(kG) = IG is
the set of elements acting trivially on k.

Moreover, kG is indecomposable as a module over itself. If kG = M@ N with M, N # 0,
then J(kG) = rad(M) @ rad(N). But this would imply that dim J(kG) < dim kG — 2.

In particular, if G is C), then kG = V), (cf. Section 7.1).

10 Essential morphisms and projective covers

Definition 10.1. A morphism f : M — N is essential if it is surjective and for any proper
submodule M’ C M we have f(M’) # N.
A projective cover of M is an essential morphism f: P — M with P projective.

Lemma 10.2. Let M be a finitely generated R-module. If R is of finite length, then
M — M/rad(M) is essential.

Proof. In this case, we have rad(M) = J(R)M by Proposition 9.3. Assume there is a
submodule N C M such that N + J(R)M = M. By Nakayama’s Lemma (Lemma 5.6) we

have
J(R)-M/N = (J(RIM +N)/N =M/N — M/N =0

and so M = N. O

Proposition 10.3. Let 7 : Ps — S be a projective cover of S. Assume that f : Q — S
18 a surjective morphism with Q projective. Then Pg is a summand of QQ and f factors
through the projection on Pg.

In particular, a projective cover, if exists, it is unique up to isomorphism.

Proof. By Lemma 8.3, there exists 5 : Q — Pg such that 76 = f and o : Pg — @ such

that fa = .
\S
\\Q

We have mSa = m and since 7 is essential we have S« is surjective, so also 3 is surjective.
Since Pg is projective 8 splits and Pg is a summand of Q.

Assume now that f = 7 is also essential. Since 7 is already surjective when restricted
to the summand of ) isomorphic to Pg, we have () = Pg. O

Remark 10.4. Projective covers are unique up to isomorphism, but this isomorphism is
not unique. This is not an universal property!
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In the rest of this section, we assume that A is a finite dimensional k-algebra. In this
case, projective covers always exist and indecomposable projectives are in bijection with
the simple modules.

Lemma 10.5. Let A be a finite dimensional algebra over a field k. Let P be a finitely
generated projective A-module. Then P is indecomposable if and only if P/rad(P) is
simple.

Proof. Since A is finite dimensional we have rad(P) = J(A)P. If P = P; & P», then
rad(P) = J(A)P = J(A)(P, & P») = rad(P1) @ rad(P). It follows that P/rad(P) =
Py /rad(Py) @ Py/ rad(P2) is not simple.

Assume now that P is indecomposable. Since P/rad(P) is semisimple, it suffices to
show that P/rad(P) is indecomposable, or equivalently, that End(P/rad(P)) is local.

Let ¢ : P — P be a morphism. Then ¢(rad(P)) = ¢(J(A)P) = J(A)¢p(P) C rad(P).
So ¢ induces a morphism ¢ : P/rad(P) — P/rad(P) and the map 6 : Enda(P) —
End4(P/rad(P)) defined by §(¢) = ¢ is a morphism of k-algebras. Moreover, 6 is surjec-
tive. In fact, if ¢ : P/rad(P) — P/rad(P), then by Lemma 8.3 we find ¢ : P — P such

that the following diagram commute

P P

d |=

P/rad(P) —"— P/ rad(P)

so that 0(¢) = 1. Since P is finitely generated A-module, it is finite dimensional over k,
so it has a composition series. By Lemma 7.4, any ¢ € End4(P) is either nilpotent or
invertible. Let ¢ € End4(P/rad(P)) and let ¢ € End(P) such that 6(¢) = 1». Then
1 is invertible if ¢ is, and is nilpotent if ¢ is. So all the element of End(P/rad(P)) are
invertible or nilpotent, hence by Corollary 7.5, the ring End4(P/rad(P)) is local. O

Proposition 10.6. Let A be a finite dimensional algebra over a field k. Let S be a simple
A-module. Then

1. there exists a projective cover Ps of S such that S is the only simple quotient of Pg,
i.e. we have Ps/rad(Pg) = S,

2. we have Pg = Af for some idempotent f € A

3. we have fS # 0 and fT =0 for all T simple modules not isomorphic to S.

Proof. We can decompose A = P| & ... ® P into indecomposable projective A-module.
Since S is simple, for any 0 # s € S, the morphism ® : A — S defined by ®(a) = as is
surjective. Moreover, we have ®(F;) = S for some i. So there exists a surjective morphism
® : P, — S with P; indecomposable projective. Moreover ®(rad(P;)) = J(A)S = 0 because
the Jacobson radical acts trivially on simple modules. So ® factors through P;/rad(F;).
Notice that P; is finitely generated, so by Lemma 10.5, we have that P;/rad(F;) is simple,
so & : P;/rad(F;) = S is an isomorphism. Since P; — P;/rad(F;) is a projective cover, we
deduce that P; is the projective cover Pg of S. This shows the first part.

Since Ps = P; is a summand of A, we have P¢ = Af for some idempotent f € A.
Moreover, we have Afs = S, so fs # 0. If T is a simple module, and ft # 0 for some
t € T, then af — aft defines a surjective morphism ¢ : Ps — T'. Since rad(Ps) = J(A)Ps,
we have ¢(J(A)Ps) = J(A)T = 0. Hence, ¢ factors through Ps/rad(Ps), and it induces
a surjective morphism S = Pg/rad(Ps) = T. It follows that S =T O
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Theorem 10.7. Let A be a finite dimensional algebra over a field k. We have a bijection

U { projective indecomposable } ~, { simple }
/= /=

A-modules A-modules

P+ P/rad(P)

Moreover, all projective indecomposable A-modules are summand of A and we have a de-
composition of A-modules
A= @ pdms.

Selrry (A)

Proof. Let P be an indecomposable projective A-module. Notice that we cannot apply
directly Lemma 10.5, because we do not know a fortiori that P is finitely generated.

Since A is finite dimensional we have rad(P) = J(A)P. Then P/rad(P) is a module
over the semisimple ring A/J(A), so it splits into simple modules. In particular, it has
a simple quotient S. Let now Pg be the projective cover of S. It follows by Proposi-
tion 10.3, that Pg is a summand of P. Since P is indecomposable, we have P =2 Pg. Then
P/rad(P) = S. It follows that ¥ is well-defined. Moreover, it is injective by Proposi-
tion 10.3 and surjective by Proposition 10.6.

Moreover, if P is indecomposable then P = Pg for S = P/rad(P), so it is a summand
of A by Proposition 10.6. Recall that A/J(A) is semisimple, so by the Artin-Wedderburn
theorem we have

AjJ(A) = P s,

S simple
Both A and g simple Pgim’“ S are projective cover of A/J(A), so they are isomorphic. [

Remark 10.8. With a similar argument, one can show that any projective module P is
a direct sum of indecomposable projectives. In fact, if P/rad(P) = ,c; Si, consider the
module Q := @,.; Ps,. We have a surjective morphism f : Q — P/rad(P), and we can
find lifts «: Q@ — P and 5 : P — @ as in the following commutative diagram.

P P/rad(P)

N

Q
Now, U :=1Idp —aff € End(P) and for any = € P we have
m(U(2)) = 7(z — af(z)) = n(z) = fB(z) = n(z) — 7(x) =0,

so Im(¥) C rad(P) = J(A)P. So Im(¥V) = U(Im(TV 1) c U(J(A)N1P) = J(A)NP by
induction, so ¥ is nilpotent. It follows that and a8 = (Idp —¥) = (Idp +¥ + U2 + .. )71
is an automorphism of P.

We have rad(Q) = J(A)Q = @, rad(Ps,). Similarly, we have Im(Idg —fa) C rad(Q),
so fa is also an automorphism of Q).

It follows that « is both surjective and injective, so P = Q.
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11 Projectives for the group algebra

In this section we specialize to the case A = kG and discuss some examples.

Example 11.1. Let G be a finite p-group and k be a field of characteristic p. Then the
trivial representation is the unique simple kG-module. It follows that kG is the unique
indecomposable projective module. In particular, the only idempotent in kG is 1 and all
projective kG-modules are free.

Example 11.2. Let k£ be an algebraically closed field of characteristic 2, for example
k = Fy (but also k = F; would work.) We want to find the indecomposable projective
kSs-modules. Let N be the subgroup generated by a 3-cycle. Then kN is semisimple, and
we have kN = k3. More precisely, we have

kN =kNe; @ kNey B kNes
with
e1 =14 (123) + (132), ez = 1 4+ w(123) + w?(132) and e3 = 1 4 w?(123) + w(132),

where w € k is a primitive third root of unity. (These can be obtained via the inverse
Fourier transform: notice that |[N|~! =1 in k).

So kS3 = kSse1 @ kSses @ kSsez is a decomposition of kS35 into projectives. Since
S3 = N U (12)N we have kSse; = kNe; + k(12)Ne; = ke; + k(12)e;, and dimg(kSse;) = 2
for all i. One can show that kSses = kSses. In fact,

HOHIkS3 (k53€2, ]{?5363) = €2<k53)€3

Since es = (12)e3(12), we have (12)e3 = (12)e3(12)(12)es € e2(kSs3)es, so we have a map
f : kSsea — kSses which sends xzes to x(12)es, and f is an isomorphism. (If f(zez) =
z(12)es = 0, then also z(12)e3(12) = zey = 0).

One-dimensional representation of S3 factor through S3/N = Cy. So the trivial rep-
resentation is the only irreducible representation of £S5 of dimension one. Since the pro-
jective cover of k can only occur once in kS3, we have the kSseq is the projective cover of
k, while kS3es & kSses are irreducible. There are two simple representations of S3 over
k: the trivial representation and a simple representation of dimension 2 (constructed as in
characteristic 0).

In kSse; we have the submodule k(>
isomorphic to the trivial representation.

gess 9) = k((12) + 1)e, and its quotient is again

Example 11.3. Let G be the direct product G = H x N, where H is a p-group and |N|
is not divisible by p. Then kG = kH ®j kN. Since kN is semisimple, we have

LN & @Sdims
S

where the sum runs over all simple kN-modules S. On the other hand, kH is indecom-
posable, so
kG = P (kH @, 5)™ 5,
S
So kH ® S is a projective kG-module. Moreover, each kH ® S occurs dim S-times, and so

they are indecomposable with each kH ® .S being the projective cover of the simple module
E®S.
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Projective covers are useful because they can be use to compute the composition factor
of a module.

Let M be an A-module with a composition series and S a simple A-module. We denote
by [M : S] the number of times S occurs as a factor in a composition series of M. From
the Jordan-Hoélder theorem we know that [M : S| is well defined.

Proposition 11.4. Let 7w : Ps — S be a projective cover of S. Let M be an A-module of
finite length. Then

dimy Hom 4 (Pg, M) = [M : S] dimj, End4(S5).
In particular, if k is algebraically closed we have dimy Hom4(Ps, M) = [M : S].

Proof. The proof is by induction on the length ¢(M). If /(M) = 1 then M is simple. Then
f: Ps — M factors through Ps/rad(Pg) = S and f is either an isomorphism if M = S or
0.

Assume now the statements for modules N with ¢(N) < ¢(M). We have a composition
series 0 C M1 C ... C My_1 C My = M. Then by Corollary 8.4 we have

Hom 4 (Ps, M)/ Hom g (Ps, My_1) = Homy4(Pg, M/M;_1)

Since ¢(My_1) < (M) and M /M,_; is simple, the first claim follows by induction. The
second claim follows from Schur’s lemma. g

Definition 11.5. For S, T simple modules, we define
cst := [Pr : S] = dimy Homy (Pgs, Pr)/ dimg End 4(S).
The matrix (cs7)s 1 is called the Cartan matriz of G

Example 11.6. If G is a p-group, then the Cartan matrix of G has a single entry, which
is |G|.

Example 11.7. If G = S5 and k is of characteristic 2, then there are two classes of simple
kG-modules: the trivial module and kSses. The Cartan matrix is

(1)

Theorem 11.8. Let S, T be simple modules of kG. Assume that k is splitting for G. Then
we have
dimk Homkg(Ps, PT) = dlmk Homkg(PT, Ps)

In particular, if k is a splitting field for G. Then for any S,T we have csT = crs. In other
words, the Cartan matriz fo G is symmetric.

Proof. We postpone the proof. O
Let k be a field of characteristic p. Let G be a finite group.

Lemma 11.9. Let H be a subgroup of G. Then resg and indg preserve projectives.

12

Proof. 1f P is a projective kG-module, then exists I with kG! = P& P’. Then resZ (kG)
Dyeic/m kHg is a free kH-module, and so is resH (kGT). So resH (P) is a summand of a
free module and is projective.

If Q is a projective kH-module, then @ is a summand of kH'. Since ind%(kH)
kG ®@pp kH = kG is free, also ind%(Q) is a summand of a free module.

0O
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Proposition 11.10. If p® divides |G|, then p® divides dimy P, for any projective P.

Proof. Let H be the p-Sylow subgroup of G. If P is projective, then resg(P) is free, so
P = (kH)" and dim P = p“n. O

Definition 11.11. We denote by O,(G) the unique maximal normal p-subgroup of G.

Notice that O,(G) always exists. In fact, if H and K are normal p-subgroups, then
also HK is a normal p-group.

Lemma 11.12. The irreducible representations of G over k are in correspondence with
the irreducible representations of G/Op,(G), with the bijection given by the pullback.

Proof. Let S be a simple kG-module. Then resg” (G)(S) is also semi-simple by Clifford’s
theorem. Since the trivial module is the only simple kO, (G)-module, it follows that O,(G)
acts trivially on S. Hence S factors to a simple representation of G/O,(G). Vice versa,
the pullback of a simple G/O,(G)-module always give a simple G-module. O

Example 11.13. In this example we study representation of the group A4 in characteristic
p. If p # 2,3, then kA4 is semisimple and the representation theory is the same as in
characteristic 0.

Assume p = 2. Let k be a splitting field of A4 of characteristic 2 (for example, we can
take k = F4 or k = F5.) In this case the 2-Sylow subgroup, given by the Klein subgroup
K = {id, (12)(34), (13)(24), (14)(23)} is normal and the quotient A4/K is a cyclic group
of order 3. By Lemma 11.12, we know that the simple kAs-module can be obtained as
the pullback of the simple kAy/K = kCs-modules. The algebra kCj5 is semisimple. In
particular, there are three simple modules all of dimension one. We call them ki, k, and
k.2, where w € k is a third root of unity, where k; is the module on which (123) acts as i.

We also have a section of Ay — A4/ K, i.e. there is a subgroup Cs = ((123)) of A4 such
that the composition

03 — A4 —» A4 / K

is an isomorphism (this happens because Ay is the semidirect product of K and C3). Since
k1, k., and k2 are simple kC3-modules and kCj is semisimple, they are also indecomposable
projective kCs-modules. By Theorem 10.7, also Py := indé‘; (k1), P, := indé;1 (k,) and

P, := indég(sz) are projective. Moreover, by Frobenius reciprocity we have
dimk HomkA4 (Pl, kl) = dimk HOka3 (kl, kl) =1

and similarly Homyga, (P, k,) = Homga,(P1,k,2) = 0. So, after decomposing P; into
indecomposable projective modules, which are the projective cover of ki, k, and k 2 by
Theorem 10.7. we see that P; is the projective cover of k;. Similarly, P, is the projective
cover of k, and P,z is the projective cover of k2. We have

kKA, =2 PP, sz.
We compute now the Cartan matrix. By Frobenius reciprocity, we have
dimk HomkA4 (Pl, Pl) = dimk HOIIl].CC3 (kl, resgi’ Pl)

Since |Cs] is coprime with 2, we can easily compute resii (Py) by looking at the characters.
For g € C5 we have

Xresii(Pl)(g) = Xresii indég(kl)(g) = [AZ/C }Xl(l'_lg(l;) = |{.’L’ c [A4/C3] | :L'_lgx € 03}‘
r€[Ag/C3
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Since K = {id, (12)(34), (13)(24), (14)(23)} = [A4/C3], it is easy to see that x _ cs (Pl)(l) =
Tes 4
4 while x ey, ((123)) = x5, .((132)) = 1. In the same way, we can cor;pute the
res 4 (P1) res o (P1)

following character table.

Cs |1 (123) (132)
res(Py) | 4 1 1
res(P,) |4 w w?
res(Pe2) |4 w w?

We obtain resii(Pl) >~ 2@k, ®k,2, resij(Pw) >~ k2 ®k,2 and resii(Pl) = k1 @k, ®k2,.
Hence, the Cartan matrix of Ay is

2 1
1 2
11

(NI

Assume now p = 3. Let k be a field of characteristic 3. In this case, the 3-Sylow
is not normal and O3(A44) = 1. However, K = (5 x (5 is a normal subgroup so we can
apply Clifford theory to K. Recall from Theorem 4.8 that the simple modules of kA4 are
in bijection with Par(A4, K)/As. We want to compute the set Par(A4, K). Its elements
are the pairs (x, W) where x is an irreducible representation of K and W is an irreducible
representation of the inertia group G, such that resgx (W) = x* for some a.

Notice that KK is semisimple, and that the simple kK-modules are k1 1,k1 —1,k—11
and k_q,_1, where k;; is the one-dimensional module on which (12)(34) acts by i and
(13)(24) acts by j. The inertia subgroup of k1 is A4. The inertia subgroup of k_1 1 is the
centralizer of (12)(34). This contains K and is not A4, so it must be K. It follows that
the orbit of k_1 1 has |[A4/K| = 3 elements, so k1 _1,k_; 1 and k_; _; are all in the same
orbit.

If x = ki,—1,k—11 or k11, then G, = Ay and W = x. It follows that @ :=
ind‘;}“(kl’_l), which has dimension 3 is both simple and projective.

If x = k1,1, then W is an irreducible representation of A4 such that resZ(W) = ki ;.
One possibility is W = k is the trivial representation and ¢ = 1. By Frobenius reciprocity,
we have

a = dim Homy (ves (W), k1,1) = dim Homy, a4, (W, indg? (k1.1)).

Hence the W-isotypic component of ind?}“(k;) is isomorphic to W@ and adim W = a? < 3
by Lemma 1.14. It follows that @ = 1 and W is the trivial representation. So there
are only 2 G-orbits in Par(A4, K), hence 2 irreducible representations of A4. Moreover,
by Lemma 4.6, these are the trivial representation k& and Q = ind‘;}‘*(kl,_l), which has
dimension 3. Since induction preserves projective modules, @ is also projective. Let Py be
the projective cover of k. Then, we have

kA, = P QP

hence Py has dimension 3. Then, we must have P, = indf(“(km). In fact, by Frobenius,
we have a surjective map ind‘;}“(kl,l) — k, hence by Proposition 10.3, Py is a summand of
ind?(4(k171). So they are the same because dim ind?}“(lﬂm) = 3. Finally, we compute the
Cartan matrix. We have

dim HOInkA4(Pk, Pk) = dim Hoka(res(Pk), ]{3171) = dim HOHl]CK(k‘il, kl,l) =3
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and dimga, (Pg, Q) = dimga, (Q, Pr) = 0 and dimg4,(Q, Q) = 1 because @ is irreducible.
Hence, the Cartan matrix of A4 in characteristic 3 is

3 0
0 1/°
In this case, we also have a decomposition as rings as
kA4 = End(Py)% x Mat(3,End(Q)?) = End(Py)? x Mat(3,k).

This is an example of a block decomposition.

12 p-modular systems and decomposition matrices

We want to connect the representation theory in characteristic p of G to the representation
theory in characteristic 0, which is much more well understood. For this reason, the main
tool is to use a (0,p)-ring O, i.e. a commutative local ring O with a maximal ideal m
such that the field of fractions K = Quot(Q) is of characteristic 0 and the residue field
F = O/m is a field of characteristic p.

Remark 12.1. If O is a commutative ring, then O is local if and only if it has a maximal
ideal by Lemma 7.2.

If N is a O-module, then N/mN is a F-module and N ®p K is a K-module. Similarly,
if G is a group and N is a OG-module, we can construct from N a FG-module N/mN
and a KG-module N ®¢ K.

Example 12.2. The ring Z,) = {{ | p1 b} C Q is the localization of Z at (p). It is local,
its maximal ideal is J(Z,)) = pZgy = {3 | p | a}. The fraction field is Q, and the residue
field Z(p) /pZ(p) = Fp.

Definition 12.3. We say that a commutative ring is a principal ideal domain (PID for
short) if it is an integral domain such that every ideal is principal, i.e. every ideal I = (a)
for any ideal I.

Example 12.4. The ring Z is a PID. In fact, all its ideals are of the form (n), for some
n € N. The ring Z,) is also a PID. Its ideals are all of the form (p*), for some k > 0.

We recall the following fundamental fact about PID

Theorem 12.5 (Structure theorem for modules over a PID). Let R be a PID. Then a
finitely generated R-module M is isomorphic to a direct sum of R/(a;) for some elements
aj € R, 1.e. we have

M = P R/(a;).
J
Proof. See for example [2, Satz 2.4.5]. O

Lemma 12.6. Let O be a PID with field of fractions K. Let V be o K-vector space.
Then, any finitely generated O-submodule M that contains a basis of V 4s a full lattice,
i.e. M= O™ with n =dimg V.
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Proof. The submodule M is a finitely generated O-modules. Since M is torsion free, by
Theorem 12.5, it must be isomorphic to O for some k. Let my,..., ms be a basis of M
over O. Since M contains a basis of V, then my,..., my generate V over K and we have
k > n. Assume we have a linear combination of the form

comi +como+ ...+ cgmy =0

with ¢; € K. After multiplying by the denominators, we can assume that m; are linearly
dependent over O, which is a contradiction. O

Proposition 12.7. Let O be o PID with field of fractions K. Let G be a finite group
and let V be a KG-module. Then there exists a full O-lattice M which is stable under G
(equivalently, M is a OG-module).

Proof. Let vi,...,v, be any K-basis of V. Then, we consider M = >, OG - v;. Then
M is a finitely generated O-module which contains a basis of V, so it is a full lattice by
Lemma 12.6. O

This proposition gives a way to construct representations of G in characteristic p start-
ing from representations of G in characteristic zero. For example, if V is a QG-module,
we can always find a full lattice Vy C V that is a ZG-module. Finally, for every prime p
we can reduce mod p by considering the F,G-module V;/pVj.

Definition 12.8. A discrete valuation ring (or DVR, for short) is a PID R which has a
unique non-zero maximal ideal. In other words, it is a local PID which is not a field.

Definition 12.9. A p-modular system is a triple (F, O, K) where O is a discrete valuation
ring with maximal ideal m generated by m, K = Quot(O) is a field of characteristic zero
and F' = O/m is a field of characteristic p.

Example 12.10. (Fy,Z,),Q) is a p-modular system.

For any p-modular system, starting with a KG-module V we can construct a FG-
module. First we take a O-lattice Vg stable under GG, and we construct the F'G-module
Vo/mVp where m is the maximal ideal in O. As the next example shows, in general different
choices for the lattice Vj can induce not isomorphic modules Vp/mVj.

Example 12.11. Let G = Cy = {1, g} be the cyclig group with two elements. Then,
in the regular representation QG we can choose the lattice Ly = Z2)1 ® Z(9)g. We have
Li/2L 2 Fyl @ Fag = FoG, so it is indecomposable by Example 11.1.

We can also choose the lattice Ly = Z)(g — 1) © Z(2)(9 + 1). In this case, we have
Lo/2Ly =2 Fo(g — 1) @ Fa(g + 1). But both Fa(g — 1) = Fa(g + 1) are isomorphic to the
trivial representation of G, so Ly/2Ls is not indecomposable and Lo/2Ly % L1 /2L;.

However, at least the composition factors of Vj/pVp are uniquely determined.

Theorem 12.12 (Bauer-Nesbitt’s theorem). Let (F, O, K) be a p-modular system and
G a finite group. Let V' be a KG-module and let Ly, Lo be two full O-lattices which are
stable under G. Then Li/mLy and Lo/m Ly are two FG-modules with the same composition
factors and the same multiplicities.

Proof. Notice that L1 + Lo is also a full O-lattice, so it is enough to prove the theorem in
the case L1 C Lo. Since L1 and Ly are free O-module of the same rank, the quotient Lo/Lq
is a torsion module. This implies that Ly/L; has finite length as a O-module, hence also

35



as a OG-module. By induction, it is enough to show the theorem when L is a maximal
OG-submodule of Ly. In other words, we assume the OG-module Ly/L; to be simple.
Since Lo/L; is simple, by Nakayama’s lemma we have m(Lo/Ly) = (wLa + L1)/L1 = 0,
hence wLo C Ly. Consider the chain of O-lattices

wli Cwly C Ly C Lo.

We want to compare the composition series of Ly/mL; and Lo/mLy. Both contain the
composition series of Lq/mLo, so we conclude by showing that Ls/L; and wLs/mL; are
isomorphic. In fact, we have a morphism of OG-modules

Lo — 7['L2/7TL1

x— mx+ml,

which is surjective with kernel L. O

Thanks to Brauer—Nesbitt’s theorem, the composition factors of the FG-module L/mL
do not depend on the chosen lattice L.

Definition 12.13. Let (F, O, K) be a p-modular system and G a finite group. The decom-
position matriz is a matrix D = (drg) with columns indexed by the simple representation
of G over F and rows indexed by the simple representations of G over K. The coeffi-
cient drg, corresponding to a simple F'G-module S and a simple KG-module T, is the
multiplicity [L/7L : S], where L is any O-lattice of T

Example 12.14. Consider the group G = S3 and a splitting 2-modular system (F, O, K)
for G. (Note that (F2,Z,), Q) is not splitting, but one can take for example the modular
system (F2, Z[w](2), Q(w)), where w a third root of the unit). In Example 11.2 we computed
the projective and simple F'Ss-modules. The simple F'S3-modules are the trivial represen-
tation and the 2-dimensional module FSses = FSse3, with eg = 1 + w(123) + w?(132).

Notice that also KSsey is a simple 2-dimensional representation. (In fact, we have
KS3 = KS3e1 @ KS3ea & KSses and K Sse; contains the trivial and the sign representa-
tion). Then, OSses is a lattice inside K Sseq, and its reduction to a F'S3-module returns
precisely F'Sszes. On the other hand, both the trivial and the sign representations over K
returns the trivial F'S3-module. Hence, the decomposition matrix is

triv  FSseq
triv 1 0
sgn ( 1 0 )
% 0 1

Example 12.15. Consider now the group G = A, as in Example 11.13. Let (F, O, K) be
a splitting p-modular system for G.

Assume p=2. We have 3 simple F'Ss-module, F1, F,, and F, 2, all of dimension 1.
There are 4 irreducible representations in characteristic 0, the standard representation V'
of dimension 3 and 3 one-dimensional representations (which we denote by Ki, K, and
K_2) which are obtained from pullbacking the representations of the kernel A4/K = Cs.

All the representations Fy, F,,, F 2, K1, K, and K come from representations of A4/ K,
so it is clear that the corresponding minor of the decomposition matrix is the identity ma-
trix. It remains to consider the standard representation V.
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Recall the regular representation K Ay splits as VB oK e K, ® K_2. On the other
hand, we have the decomposition FFAy = P, ® P,, ® P,2. From this, and the computation
of Example 11.13, we know that [FAy : K1] = [FAy : K] = [FAs : K 2] = 4. Since OAy
is a lattice of K A4 with quotient F'A4 we obtain

[FAy: Fi] —dp k, —dr g, —di . F1 - 4-1

R = [KAy: V] =3t

Similarly, we also get dv,p, = dv,r,, = 1. The decomposition matrix in this case is

I, F, F,
Ki /1 0 0
K,[o0o 1 o0
Ke:|l0 0 1
v \1 1 1

Assume p—3. In this case we have only two simple FAs-modules, the trivial rep-
resentation F; and the three dimensional representation (). By dimension consideration,
the only composition factors in a reduction mod p of Ky, K., K2 is ;. Looking at the
composition factors of KAy and F Ay we also deduce that the only composition factor of
a reduction mod 3 of V is ). Hence, the decomposition matrix is

F Q

K 1 0
K, 1 0
Ke.l1 o
Vv 0 1

13 Complete splitting p-modular systems

In what follows, we will impose more restrictive hypothesis on the p-modular system, so to
ensure a better behaved relation between K G-modules and FG-modules. This is mostly
a technical assumption and does not have really consequence on the representation theory
(in the same way as representation theory on any splitting field of a given characteristic is
basically the same).

Definition 13.1. Let O be a DVR with maximal ideal m. A sequence (a5, )n>0 of elements
of O is said a Cauchy sequence if for any b > 1 there exists IV such that for any ny,no > N
we have

Uy — Gpy € WP

Remark 13.2. The condition on Cauchy sequence coincides with the usual condition for
metric space if we define the distance

d(z,y) =27"
where k is the maximal integer such that z — y € m*.

Definition 13.3. Let O be a DVR with maximal ideal m. We say that O is complete if
every Cauchy sequence admits a limit, i.e. if for every (ay)n>0 Cauchy there exists a € O
such that for any b > 1 there exists N > 0 such that a,, — a € m® for any n > N.
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Example 13.4. Let O = Z,. Consider the sequence (a,) with a,, = 1 +p+p? ..
Notice that if m,n > N then pV | a,, — am, 50 (a,,) is Cauchy. Assume that the sequence
has a limit @ = lim a,,, then for any N > 1 we have

PV la—Q+p+...+p").

If a is positive, then it is bigger that p’¥~! for any N, which is impossible. If a is negative,
we have for any N > 0 that

-1 pVp-2)-1
p—1 p—1 '

a<—pV+ L+ +pV ) =N+

This is impossible if p > 2. So (an) has not limit if p > 2 and Z,) is not complete.
However, if p = 2 we have lima, = —1. To show that Z) is not complete, one can
consider the Cauchy sequence b, = 1 4+4 +42 4+ ... 4 4™,

Given a DV R O we can consider the completion O of O as a metric space. Formally,
O is the set of Cauchy sequences of O under the equivalence relation (a,) ~ (by) if
lim(a, — b,) = 0. The completion O acquires in a natural way the ring structure from O.
(For example (ay) - (by) = (anby) is a Cauchy sequence: apby, — amby = an(by — byy) +
(an — am)bm)-

Consider the ideal

= {(an) € O | @y =0 € O/m for n>> 0} C O.
Lemma 13.5. For any | > 0 the inclusion O < O induces an isomorphism O/m! = @/fﬁl

Proof. We have m! = {(a,) € O | @, = 0 € O/m! for n >> 0}, so the map j : O — O/l
has m! as kernel. Moreover, the map j is surjective. In fact, if (a,) € O, then (an)—an € m!
for N> 0, si (a,) = j(ayx) in O/m!. O

Lemma 13.6. Let O be a DVR with mazimal ideal m = (7). Fiz a set of representatives
[O/m]. Then, every element of x € O can be written in a unique way as

x:mo+x17r+$27r2+...
with x; € [O/m].

Proof. Let z € O. By Lemma 13.5, since O/m = O/f we can find a unique o € [O/m]
such that x —xg € m. So x = xo + 7w, for some x|, € 0. Reiterating, we get z(, = x1 + 7]
with 2o € [O/m] and 2| € O. The sequence g, To + 71, To + T + 72T, . .. is Cauchy,
and is equivalent to x. O

Corollary 13.7. The completion of a DVR O s a complete DVR with the same residue
field.

Proof. We know that O is complete. Let = xg + 217 + 2972 + .... The system of
equations (zg + 217 + z2m2 +...) (Yo + y17™ + yor? + ...) = 1 admits a solution in the y;’s
if zg # 0. Then z is invertible if and only if 2o # 0. Hence, O is local with maximal ideal
generated by 7.

Assume I C O is an ideal and let = zo7® + 2179 + 20792 4 ... € I with 20 # 0.
Then x = 7%y, with y invertible. Let ¢ minimal such that there exists x € I of this form.
Then I = (1), so O is a PID.

It follows that O is a complete DVR which has the same residue field by Lemma 13.5.

O
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Example 13.8 (The ring of p-adic integers.). The completion of Z, is denoted by Z,
and it is called the ring of p-adic integers. We have

Zy={ag+arp+ap®+...|a; €{0,...,p—1}}.
In Z,, we have —1 =Y "> (p — 1)p™.

n=0

Definition 13.9. We say that a p-modular system (F, O, K) is complete if O is a complete
DVR.

Example 13.10. The fraction field of Z, is denoted by Q, and is called the field of p-adic
numbers. Notice that it is a field of characteristic 0. The triple (F,,Z,, Qp) is a complete
p-modular system.

The modular system (F,,Z,,Q,) is probably the only complete modular system that
we meet explicitly in this course. However, for later applications, it usually convenient to
assume that we have a complete p-modular system (F, O, K) such that both F' and K are
splitting field for G (or, even better, for all subgroups of G). In this case, we say that the
p-modular system is splitting.

Theorem 13.11. For any group G and any characteristic p, there exists a complete split-
ting p-modular system for G.

Proof. We omit the proof. See for example [4, Prop. 16.21| O

Concretely, a splitting modular system can be obtained from a modular system by
adding a e-th primitive root to Q,, where e is the exponent of G. However, the details
for the construction of a splitting modular system are beyond the scope of this course.
Moreover, this does not have direct consequence in representation theory. In fact, the
representation theory of G in characteristic p does not depend on the field k, as long as k
is splitting.

From now on, for any finite group G to have a splitting complete p-modular system
(F,0,K).

13.1 Lifting of idempotents

The condition that O is complete is important because it allows to lift idempotents from
FG to OG. This implies that projective F'G-module can always be obtained as a quotient
of a projective OG-module.

We begin with the simpler case of a nilpotent ideal, which will also serve as a guide for
the complete case.

Lemma 13.12. Let R be a ring and I a nilpotent ideal, i.e. IV =0 for some N > 0. Let
e € R/I be an idempotent. Then, there exists f € R idempotent with e = f + I.

Proof. We start by looking for an idempotent in R/I?. Take a € R such that @ = e. We
have a2 —a =0 and a®> —a € I. So (a? —a)? € I? and (a? — a)? = 0 in R/I?. We define
eg = 3a® — 2a®. We have e3 = 3@ — 2a = e and

e2 — ey =(3a® — 2a%)(3a® — 2a° — 1)
—a?(3 — 2a)(a — 1)*(—1 — 2a) € I*.

It follows that ey is an idempotent of R/I?. We reiterate this process: starting with
ei—1 € R one constructs an element e; € R such that e; is an idempotent in R/Ii and e; =
&1 € R/I"'. because R/IN = R for some N > 0, we conclude by taking f = ex. O
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Basically the same proof works for group algebras over a complete DVR.

Proposition 13.13. Let O be a complete DVR with mazimal ideal m = () and residue
field F = O/m. Let G be a finite group. Let e € FG be an idempotent. Then, there exists
f € OG idempotent with e = f + 1OG.

Proof. We have FG = OG/mOG. As in the proof of Lemma 13.12, we can construct a
sequence (ey) of elements of OG such that e, is an idempotent of OG/7"OG for any n
and e, — e,_1 € ™" 1OG. We can write each e, as

€n = Z en(g)g

geG

for some e,(g) € O. It follows that, for any g € G, e,(g9) — en_1(g) € m™~ ! and (e,(g)) is
a Cauchy sequence which has a limit f(g) := lime,(g). Let f := deG f(g)g. Then f is
also an idempotent and e = f + 71OG. O

Lemma 13.14. Let e € FG and f € OG idempotents with e = f. Then e is primitive if
and only if f is primitive.

Proof. If f is not primitive, then f = f1+ fo with fi, fo orthogonal idempotents. But then
also f; and fy are orthogonal idempotents. Moreover, f; # 0. Otherwise, ff € m* and
fi=limff=0.

We only sketch the proof of the other direction. If f is primitive, then f is the unique
idempotent in fOGf. Proposition 13.13 can be generalized to the case of any finitely
generated O-algebra which is free over O. So every idempotent in fFGf can be lifted
to fOGf. This means that every idempotent ¢/ € fFGf can be lifted to f, and ¢’ = f.
Hence, f is the only idempotent in fFGf and f is primitive. O

Corollary 13.15. Let (F, O, K) be a complete p-modular system and G be a finite group.
Let P be a finitely generated projective module for FG. Then, there ezists a projective
module P for OG such that P~ P/ P.

Proof. We can assume that P is indecomposable, so we have P = (F'G)e for some primitive
idempotent e € FG. Then, we can lift e to an idempotent f € OG. Then P = (0G)f
is projective. The quotient OG — F'G restricts to a surjective morphism ® : (OG)f —
(FG)e. We have (tOG) f C Ker(®). On the other hand, if a € Ker(®), then a € 71OG and
a=af, so Ker(®) C (rOG)f. It follows that ® induces an isomorphism P/7P = P. [

Remark 13.16. In general, there are F'G-modules which do not admit lift to a OG-
module. However, this is true for solvable group by the Fong—Swan theorem. So, to find
a counterexample we can’t look at groups which are too small. The smallest example is
As for p = 2. In this case, there are two irreducible As representations of dimension 2
which do not have any lift to characteristic 0 (in fact, the dimensions of the irreducible
representations in char 0 are 1,3,3,4,5). The decomposition matrix in this case is

1000
1100
D=1 010
0 001
1110
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14 Brauer reciprocity

Given a projective F'G-module P, we can find a lift to a projective OG-module P. Notice
that P is free as a O-module (finitely generated projective modules over a PID are always
free!) Then, by extending scalars, we obtain a KG-module PEK .= P ®e K. In principle,
different lifts could lead to different OG-modules.

Lemma 14.1. We have 1OG C J(OG).

Proof. Let V be simple OG-module. Then 7V C V is a submodule, so 7V =0or 7V = V.

Assume that 7V = V. Recall that since V' is simple, then V =2 OGv for some v € V.
In particular, V' is finitely generated as a O-module. We have (1) = J(O), so we can apply
Nakayama’s Lemma (Lemma 5.6) to deduce that V' = 0.

Hence, 7V = 0 for any simple module V. So 7 acts trivially on any OG-simple module
and (m) C J(OG). O

Proposition 14.2. Let P be finitely generated projective module for FG. Then the lift p
to a OG-module which is free as O-module is unique up to isomorphism. Moreover, P is
necessarily projective as a OG-module.

Proof. We can assume that P is indecomposable, i.e. that P = Pg for some S. We know
from Corollary 13.15 that there exists a projective OG-module ﬁg lifting Ps.

Assume that L is another OG-modules such that L/wL = Pg. It follows that rko (L) =
dimp(Ps) = rko(Ps).

Since ]/3;' is projective, we can find 0 : ﬁg — L so that the following diagram of OG-
modules is commutative.

Ps

N

L

Py

Moreover, 6 induces an isomorphism 6 : ]/JE/WF/’E — L/wL, so 0(]/3;) +mL = L. We have
m(L/0(Pg)) = L + 0(Ps)/0(Ps) = L/0(Ps), so by Nakayama’s Lemma (Lemma 5.6) we
obtain L = 9(1/35), or 0 is surjective. But a surjective morphism between two free modules
of the same rank is also injective, then 6 is an isomorphism. O

Given the lift ]3, we can extend scalar and obtain a KG-module PE .= Pp ®o K. The
next theorem shows how we can decompose PX into simple KG-modules.

Theorem 14.3 (Brauer reciprocity). Let G be a finite group and let be (F, O, K) be a split-
ting complete p-system for G. Let 11,15, ..., T, be a complete set of representatives of the
1somorphism classes of simple KG-modules and S1, ..., Sy a complete set of representatives
of the isomorphism classes of simple F'G-modules.

Let eq, ..., e, € OG be idempotents such that F'Ge; C F'G is the projective cover of S;.
Then for any j we have

(F/(%)K = KGej = @dij‘Ti,
j=1

where d;j is the corresponding entry of the decomposition matriz.
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Proof. Recall that KG is semisimple, so we can decompose KGe; into simple modules.
We have

a
KGe; = P dj;T..
i=1
for some d}; € N. Since K is splitting, we have
d;;j = dimg Homgq(FGe;, T;) = dimg (e;T;)
Let L; C T; be a full O-lattice which is G-stable. Then e;L; is a O-submodule of L;, so

it is free over O and it is a full lattice of e;7;. Moreover, we have e;L; := e;L;/mejL; =
€j(Li/mL;). Tt follows that:

d;j = dlmK(e]ﬂ) :rk(/)(e]’Li)
=dimp HOmpg(FG?j, LZ/WLZ) = [LZ/T(LZ : SJ] = Clij
by definition of the decomposition matrix. We conclude that d;; = d;j for any ¢ and 5. O

Corollary 14.4. Let G be a finite group and let be (F,O,K) be a splitting complete p-
system for G. Let C be the Cartan matriz of FG and D be the decomposition matriz. Then
we have C = D'D. In particular, the Cartan matriz is symmetric.

Proof. Let S1,...,5, be a complete set of representatives of the isomorphism classes of
simple F'G-modules. Let eq,...,e;, € OG be idempotents such that F'Ge; C FG is the
projective cover of S;. Then, we have

¢ij = [F'Gej : S;) =dimp Hompg(FGe;, FGej)
=dimp(&;FGej)
=rko(e;O0Ge;)
=dimg (e; KGej)
=dimg Homgg(KGe;, KGe;)

= dimy Homgg (EB dyi T, é d,,jTr)
T r=1
= Zaj dyidlyj.
r=1

where 11, ..., T, are the simple KG-modules. O

Remark 14.5. The Brauer reciprocity can also be stated as

(Ps" :T] = [L/xL: 9.

for any simple F'G-module S and any KG-module T. We can also write it as
. =K .
dimg Homgg(Ps ,T) = dimp Hompg(Ps, L/7L),
which can be generalized to any projective FG-module P and any KG-module V to
dimg Homgq(PX, V) = dimp Hompg(P, L/7L).

The pair of “wannabe functors” P — PK andV > L /7L are adjoint with respect of the
pairings dimyg Homgg(—,—) and dimp Hompg(—, —). (They are not real functors, but
this statement can be made precise at the level of Grothendieck groups.)
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15 Brauer characters

In characteristic 0, the study of representations of a finite simple is made simple by char-
acter theory: to compute the decomposition of a representation of irreducible it is enough
to know the character table. We want to find an analogue in characteristic p, at least to
determine the composition factors of a given representations. The usual character theory
does not work. For example, if V is a representations, then V has the same character
of V®P+L 5o we cannot distinguish them using the characters. However, if we restrict to
simple representations, this cannot happen and, actually, they still give linear independent
functions.

Proposition 15.1. Characters of simple representations over a splitting field are linearly
independent.

Proof. Let Sy,...,S, be a complete set of isomorphism classes of irreducible representa-
tions of FG-modules, where G is a finite group and F’ is splitting for G.

Let A = FG/J(FG). We know that A is a semisimple algebra. Recall that the
Jacobson radical acts trivially on simple modules. Then Sy,..., S, is also a complete set
of isomorphism classes of simple A-modules.

Since A is semisimple, by the Artin—-Wedderburn theorem, we have

A= EndF(Sl) X EndF(Sg) X ... X EndF(Sn) (3)

For M; € Endp(S;), let ]\Z the elements corresponding to (0,...,0,M;,0,...,0) under the
isomorphism (3).

The character xs, = Tr(p : G — GL(S;)) is a function from G to F. We can extend it
by linearity to a function xg, from FG to F, i.e. if Y ag9 € FG we have

XS Z agg | = Z agXs;(9)-

geG geG

Let M; be a lift of M; to FG, i.e. M; + J(FG) = M;. Then, we have

T, (M) = Te(Mj- : S; — S;) = Te(Mj-: S; — S;) = {TT(MZ) fi=y
0 ifi#j
where the second equality is because the Jacobson radical acts trivially on S;.
Assume now that (xs,,...,xs,) are linearly dependent, i.e. there exists c¢1,...,c, € F
with
n
ZCiXSi(g) =0 forallgedgdG.
i=1
Then, also

n
Zci)?si(a) =0 forallaec FG.
i=1

In particular, we have
n
0="> cXs, (M) = ¢ Te(M).
i=1

We can easily pick M; € Endp(S;) = Mat(F,dim S;) of trace 1, so we obtain ¢; = 0 for
all 7. O
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If we want some character theory which distinguish between V and V! we cannot
work in characteristic p. We want to find a lift to K.

Let p: G — GL(V) be a representation of V over F'. Recall that all the eigenvalues of
p(g) are roots of unity. So we have the character is a sum of roots of unity, i.e.

xv(g) =Tr(p(9) =C+... + G

with (; € F roots of unity.
We want to define a lift of x to K by finding a lift of all the roots of unity.

Definition 15.2. For any e > 1, we denote by p.(F) C F* the group of eth roots of
unity.

Lemma 15.3. Let (F, 0, K) be a p-modular system and let e be an integer not divisible
by p. Assume that F and K contain all e-roots of unity, i.e. |pe(F)| = |pe(K)| =e. Then
te(K) C O and the projection defines an isomorphism

Q¢ pe(K) = pe(F) (4)
¢—C.
Proof. Let m = (m) be the maximal ideal of O. Let ¢ € pe(kK), so (¢ = 1. Then ( = §
with a,b € O. We can write a = 7%’ and b = 7V with o',/ € O* invertible. Then
¢¢ =1 implies 7 = weBZ—/,. Hence, ea = e and ¢ = ‘g—/l € O. This shows p.(K) C O.
Since pe(K) C O, we can consider the quotient of any root ¢ € pe(K) to O/m = F.
Since (¢ =1, also " =1, 50 € pe(F).
In the polynomial ring O[z] we have

¢ —1= H (x — () € Olz]

CEpe(K)

Taking the quotient to F[x], we also get

2 —1= H (z — () € Fla]

Ceﬂc(K)

But the polynomial p(z) = 2° — 1 € F[x] is separable, i.e. all its roots have multiplicity
one. It follows that if (1 = (o then also (1 = (. It follows that @ is injective, and therefore
bijective. O

Thanks to Lemma 15.3, we can lift all eth root of unity using Q7' pe(F) =2 pe(K).
We write ¢ € pe(K) for the image of ¢ € p.(F).

Definition 15.4. We say that an element g € G is p-reqular if its order is not divisible by
p. We denote by Gyey the subset of p-regular elements.
We call p-exponent the least common multiple of the orders of g, for g € G-

Lemma 15.5. Let p: G — GL(V) be a represetnation of G over F. Let g € Greg. Then
p(g) is diagonalizable, and the eigenvalues are in p.(F), with e the p-exponent of G.

Proof. The subgroup generated by ¢ is a cyclic group of order ¢, with p{¢. Then F(g) is
semisimple, and all the simple F(g)-modules have dimension 1. So p(g) is diagonalizable
and its eigenvalues satisfy £¢ = 1. O
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Let e be the p-exponent of G. Then, for any g € G, we have g°. For any representation
p: G — GL(V) over F, the eigenvalues of p(g) is a sum of eth roots of unity. We are know
ready to define the correct analogue of characters in characteristic p.

Definition 15.6 (Brauer character). Let p : G — GL(V) be a representation of G over
F,ie. a FG-module. We define the Brauer character of G the map

Ay i Greg — K

defined by Ay (g) = G+ ...+ Cy where (1 + ... + (g4 are the eigenvalues of p(g).

Notice that Brauer characters have values in O. The Brauer character is only defined on
p-regular elements. However, as the following Lemma shows, it will not add any information
to compute it for arbitrary elements of G.

Lemma 15.7. Let g € G. Then, we can write it in o unique way as g = gi1go where g1 s
p-regqular, ord(gz) is a power of p and gag1 = g192.

Moreover, if p: G — GL(V) is a representation of G over F, then p(g) and p(g1) have
the same eigenvalues.

Proof. We have ord(g) = p*m with s > 0 and (p,m) = 1. Then, we can find integers a,b
with
ap® +bm = 1.

Let g1 := ¢ and go = ¢"™. We have gigo = ¢ t"™ = ¢, and ord(g;) | m and

ord(g2) | p*. If g = g’lgé is another such decomposition, then gpsm = 1 implies that
ord(g}) | m and ord(g5) | p*. We have

Then, also g2 = g5.

Let now p be a representation of G. Then p(g) = p(g1)p(g2). Since p(g1) is diagonaliz-
able and p(g2) commutes with p(g1), then g is triangularizable in the basis of eigenvectors
of p(g1). Hence, the eigenvalues of p(g) are products of eigenvalues of p(g1) and of p(g2).

Any eigenvalue w of p(go) satisfies wP” = 1. Since char(F) = p, this implies w = 1. [

We begin by studying some properties of the Brauer characters.

Proposition 15.8. 1. The Brauer characters are class functions on the set of p-regular
elements.

2. If V is a FG-module, then \y (1) = dimp (V).
3. If V is a FG-module, we have Ay (g) = xv(g) for any g € Grey-
4. If V.C W are FG-modules, then Aw = Ay + Ay

5. Let W be a KG-module. Let L be a full G-stable O-lattice and let W = W/zW.
Then )\W = XW|Greg'

Proof. 1. The matrices p(g) and p(h~'gh) are conjugated, so they have the same eigen-
values. It follows that A(g) = A(h~1gh) for any g € Gyey and h € G.

2. The only eigenvalue of the action of 1 € G on V is 1p € F with multiplicity dimp (V).
We conclude since the lift of 1z € Fis 1 € K.
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3. This is clear, because ?: Q(Q71(¢)) = ¢ for any ¢ € pe(F).

4. We can put p(g) in a block triangular form, with blocks corresponding to V' and
W/V. It follows that the eigenvalues for the action of g on W are the union of the
eigenvalues for V and V/W.

5. Let pw : G — GL(W) be the corresponding homomorphism. Let wq,...,w, be a K-
basis of K contained in L. This induces an isomorphism GL(W') = GL(n, K). This
identifies pw (g) with an element M € GL(n, K). Moreover, we have the following
commutative diagram

~

GL(W) GL(n,K) —— GL(n,0)
pw(g) | M
]
~ rwl9) - ‘M
GL(W) GL(n,F)

where M is obtained by restricting the entries of M to O/m. The eigenvalues of
pw (g) are the same of M, and the eigenvalues of py(g) are the same of M.

Let g € Grey. Recall that M is diagonalizable, and the eigenvalues of M are in
te(K) C O. Let pyr(x) € Olz] denote the characteristic polynomial. We have

pu()=[[(z=¢) and xw(g)=> ¢
¢ ¢

where ( runs over the eigenvalues of M. Then pas(z) = pyp(z) € Flx] is the charac-
teristic polynomial of M. It follows, that

par(@) = pu(@) = [[(z = O
¢

By Lemma 15.5, also M is diagonalizable, so the ¢ are all the eigenvalues of M, or
equivalently of py-(g). So we have

Aar(9) :Z§:ZC:XW(9)' O
¢ ¢

We can now prove the main theorem on Brauer characters.

Theorem 15.9. Let Sy,..., S, be a complete set of representatives of isomorphism classes
of simple FG-modules. Then, the Brauer characters Ag,,...,\s, form a basis of the K-
valued class functions on Greg.

Proof. We first show that Ag,, ..., Ag, are linearly independent over K. Suppose not, then
there are c¢1,...,c, € K such that

n

D cids,(9) =0 for all g € Ghrey. (5)
=1

Up to multiplying by the denominators, we can assume ¢; € O. Up to dividing by some

power of m, we can assume that there exists ¢; with ¢; ¢ (7). We can now restrict (5) to
F = O/(m) and obtain, by Proposition 15.8.3,

> @rs,(9) =Y Gixs(g) forall g € Ghreg.
=1 =1

46



Moreover, if g € G, we can write g = g192 with g1 € G,y as in Lemma 15.7. Since the
eigenvalues of g and ¢; coincide for any representations, we have xg;(g) = xs,(g1) for any
i. It follows that

n
Zcﬁxgi(g) for all g € G.
i=1
But this is a non-trivial combination which contradicts Proposition 15.1. We deduce that
ASy, .-, Ag, are linearly independent over K.

Take now a class function £ : Gyeg — K. We can extend it to a class function § : G — K
by defining £(g) = 0 for any g & G,eq. We know that in characteristic 0, the characters of
simple representations form a basis of the space of class functions. So, we can find a; € K
such that

§(9) =) axv(g) forallgeg,
i=1

where V1, ..., V,, are the isomorphism classes of irreducible representations of G over K.
Restricting to Gyeg, we get

m
g = Z aZX‘/z |Greg'
i=1

By Proposition 15.8.5, xv;|g,., is the Brauer character of V;, and by Proposition 15.8.4,
Ay; can be written as a combination of Brauer characters of irreducible representations.
It follows that £ lies in the vector space generated by Ag,,...,As,. Hence, Ag,,...,Ag,
generate the space of K-valued class functions on Gieg. O

Definition 15.10. We say that a conjugacy class C' C G is p-regular if it consists of
p-regular elements.

Corollary 15.11. The number of isomorphism classes of simple FG-module is equal to
the number of p-regular conjugacy class of G.

Proof. Let S1,...,S, be a complete set of representatives of isomorphism classes of simple
FG-modules. Then the Brauer characters Ag,, ..., Ag, form a basis of the K-valued class
functions on Gjey. So we have

n = dimg (K-valued class functions on G,eq = |conjugacy classes in Gy O

Similarly to characteristic 0, we can construct a Brauer character table containing all
the characters of irreducible representations. Knowing the Brauer character table, allows
to find all the composition factors with multiplicities of any arbitrary F'G-module.

Remark 15.12. The Brauer characters are often considered as C-valued functions. In fact,
we can fix an isomorphism g (K) = u(C) and then lift the eigenvalues of a representation
p from F to C. However, the isomorphism p.(K) = u.(C) is not unique, and different
embedding will lead to different Brauer characters.

Corollary 15.13. Let V be a FG-module. Let Sy,...,S, be a complete set of representa-
tives of isomorphism classes of simple FG-modules. Then

n

)\V = Z[V : SZP\SZ

i=1

Proof. This immediately follows from Proposition 15.8.4. 0l
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Example 15.14. We compute the Brauer character table of S3 for p = 2. Recall that the
decomposition matrix is
triv  FSseq

triv 1 0
sgn ( 1 0 >
1% 0 1

and the character table in characteristic 0 is

S3 |0 (12) (123)
triv | 1 1 1
sign |1 -1 1

vV 12 0 -1

There are 2-regular conjugacy classes in S3: 1 and (123). In this case, Brauer character
are simply the character of triv and the standard representation V, that is

Sy [0 (123)

triv 1 1
FS3€2 2 -1

(The same argument works similarly for all other cases that we have computed (i.e. S3 and
Ay) because for these groups every irreducible representation has a lift to characteristic 0.)

As another consequence we may show that the Cartan matrix is invertible.

Proposition 15.15. The decomposition matriz D has full rank and the Cartan matriz C
of FG is invertible.

Proof. Let T1,...,T, be the simple KG-modules and let Si,...,S, be the simple FG-
modules. We have

b
XT;|Greg = ALijnL; = Z dijAs;
j=1
where L; is a OG-lattice in T;. We know that (x7;)1<i<q is a basis of the class functions on
G, so, after restriction to Gy, they generate the class functions on Geq. It follows that
there exists a subset with b-elements U C {71, ...,T,} such that {xr|g,., }Tcv is a basis
of the class functions G,y — K. It follows that the rows of the decomposition matrix
corresponding to U are linearly independent, hence D has full rank.

Recall that C = D'D and both C and D have coefficient in R (actually in N, to be
precise). Let v be a vector v € R such that Cv = 0. Then, v!D*Dv = 0, or (Dv, Dv) = 0,
where (—, —) is the standard scalar product on R®. Tt follows that Dv = 0, but since D
has full rank, it is injective, so v = 0. O

However, Brauer characters do not satisfy the orthogonality relations as ordinary char-
acters do in the semisimple case. To recover similar relations, we also need to look at
Brauer characters of the projective covers.

Theorem 15.16. Let Si,...,Sp be simple FG-modules and let P; denote the projective
cover of S;. Let A denote the Brauer character. Then

1 _
<)‘Pw /\Sj>T€g = @ Z AP, <g>)\Sj (g 1) = 045

geGreg
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Before the proof, we need two preliminary Lemmas.

Lemma 15.17. Let P be a projective FG-module with lift P to a OG-module. Let g €
G\ Greg. Then xpx(g) = 0.

Proof. We can write g = g1g92 = g291 with g1 p-regular and go p-unipotent. Let H be the
subgroup of G generated by ¢ and, for ¢ € {1,2}, let H; C H be the subgroup generated
by gi. We have go # 1, so Hy is a non-trivial p-group. Notice that H is generated by g1
and go.

We can diagonalize the action of g; on P, so we can decompose

r= P w;

CEpe(F)

into eigenspaces for g;. Since go commutes with g;, then go preserves the eigenspaces W,.
In particular, each W is a F'H-module.

Recall that resg(P) is a projective F'H-module. Being a summand of P, also W is a
projective F'H-modules. It is enough to prove the claim for P = W,.

Then g1 acts on W, as multiplication by ¢, so we have W, = Fc@dlmF e as FH-
modules, where F; is the one-dimensional representation on which g1 acts by ¢. By
uniqueness of the lift, we have

K ®dimW,
We = EKqgog

with @ as in (4). In particular, g; acts on V[//\C as multiplication by Q1(¢) € ue(K). Hence,
X7 (9) = Q7 (O (92)-

It remains to show that XVV\C(gg) =0

The restriction resZQ(WC) is a projective F'Ho-module. Since Hs is a p-group, then
resg"’ (We) is free, i.e. We = (FH)®™¢ as F Hy-modules for some ne € N. By uniqueness

of the lift, we also have
— K
We = (KHy)®

as K Hy-modules. Then we obtain
Xy (92) = n¢ Tr(g2 : KHy — KHz) =0
because gs # 0. O

Proof of Theorem 15.16. Consider the (b x b)-matrix A = ((Ap,, A3, )reg)i,j- Our goal is to
show that A = Id,,.

—~K
Recall that we can lift Pg to a KG-module Ps . Let T1,...,T, be the isomorphism
classes of irreducible KG-module. Let L; be a G-stable O-lattice inside T;. We have
[Li/mL; : Sj] = d;j. Taking the Brauer characters, we have

b
XT3 |Greg = ALijnL; = Z dijAs;
j=1
On the other hand, by Theorem 14.3, we have
~K @
B =@yl
i=1
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Taking the character we obtain

a
XpK = > dijxr;.
’ =1

From the orthogonality relations for KG-modules we have (xpx,X7,) = di;j. Recall by
J
Lemma 15.17 that X5 K (9) =01if g & Greg. We obtain
s

dij = (Xpres XT) = (Xpis XTudreg = (AP ALy jery)reg = Zd'ﬂ" AP Asr Jreg-

From here, it follows that D = DA. Multiplying on the left by D!, we obtain C = CA.
Since C' is invertible, we get A = Id,. O

15.1 Brauer character tables of the symmetric group 5,

Recall that the ordinary character table of Sy in characteristic 0 is

Sy |0 (12) (123) (1234) (12)(34)
triv | 1 1 1 1 1
sign |1 -1 1 -1 1

W |3 1 0 -1 -1
w13 -1 0 1 -1
V|2 0 -1 0 2

We compute the Brauer character table for p = 2 and p = 3.

p=2. The are only two 2-regular conjugacy classes: 1 and (123), so there are two irre-
ducible representations in characteristic 2. One is the trivial one. Let V be the restriction
of V- mod 2. Then V is irreducible, or V is an extension of the trivial representation with
itself. But Ay = XV |Groo 7 2Atriv, SO V must be irreducible. The Brauer character table is

reg

Sy [0 (123)
triv | 1 1
vV 2 -1

Looking at Brauer character, we immediately see that sign = triv, and A\ = Ay =
Atriv + Ay7. Hence, the decomposition and the Cartan matrices are

triv V.
triv 1 0
sign 1 0 4 9
D= w 11} C= (2 3>
w’ 1 1
Vv 0 1

p=3. The are four 3-regular conjugacy classes: all except (123). triv and sign are well-
defined and different in characteristic 3. There are no other representations of dimension
1.

We have A7 = Agriv + Asign- Now, consider W. It is easy to see that A7 is not a linear
combination of Ay and Agign. So either Ay is irreducible, or there exists a representation
Z of dimension 2 with Az = A\jj7 — Ariv OF Az = Ay — Asign. We show that there cannot
be any representation with such a character.
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In the first case, we have Az((1234)) = Az((12)(34)) = —2. This means that both
(1234) and (12)(34) act as multiplication by —1 on Z. This is not possible because
(13)(24) = (1234)2.

In the second case, we have Az((12)) = 2, so (12) acts trivially on Z. Since the
conjugacy class of (12) generates Sy, then Sy acts trivially on Z. This is also not possible.

So such a Z cannot exist and W is irreducible. Similarly, W is also irreducible. We
can now compute the decomposition and the Cartan matrix. We have

1000 5 10 0

0100 L 920 0
D=0 o0 10|, C=

0010

000 1 00 0 1

1100 '
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