
The Hard Lefschetz Theorem for the
Flag Variety in Positive Characteristic

Patimo, Leonardo

Advisor : Dr. Geordie Williamson

The Flag Variety of a Reductive Group

Let G be a simply connected reductive complex linear algebraic group, T be a maximal torus and B ⊇ T be
a Borel subgroup.
The homogeneous space X = G/B is called the flag variety of the group G. Let W = NG(T )/T be the
Weyl group of G with length function ` and let Φ be the root system of G.
The dimension d of X is equal to the number of positive roots |Φ+| = |Φ|/2.

Example. The fundamental example to keep in mind is the following. Let G = SLn(C). The subgroup of
diagonal matrices T is a maximal torus and the subgroup B consisting of upper triangular matrices is a Borel
subgroup of G containing T . The flag variety can be identified with the set of flags in Cn:

Flag(Cn) = {(Vi)0≤i≤n | dimVi = i and Vi ⊆ Vi+1 for all i}

In fact, G acts transitively on the set Flag(Cn) and the stabilizer of the “standard” flag

0 ⊆ Ce1 ⊆ Ce1 ⊕ Ce2 ⊆ . . . ⊆ Ce1 ⊕ . . .⊕ Cen = Cn

is exactly the group of upper triangular matrices B.
The Weyl group W is isomorphic to the symmetric group Sn and, for w ∈ Sn,

`(w) = #{(i, j) | 1 ≤ i < j ≤ n and w(i) > w(j)}.

The set of positive roots is Φ+ = {εi − εj, 1 ≤ i < j ≤ n} where εi : T → C∗ is the map returning the i-th

entry on the diagonal. In particular |Φ+| = n(n− 1)

2
.

We recall the following:

Theorem (Bruhat Decomposition). The B-action on X given by left multiplication decomposes the flag
variety in a finite number of orbits, each of which is of the form BẇB/B, where ẇ ∈ G is a representative
for w ∈ W . Every orbit BẇB/B is isomorphic, as a variety, to C`(w). The closure Xw = BẇB/B is called
a Schubert variety and is a union of B-orbits. More precisely,

Xw =
⊔
v≤w

Bv̇B/B

where ≤ is the Bruhat order.

The set of fundamental classes [Xw] ∈ H2`(w)(X,Z) of Schubert varieties Xw is a basis of the integral homology
H∗(X,Z) of X.
By taking the dual, we obtain a basis {Pw}w∈W , with Pw ∈ H2`(w)(X,Z), of the integral cohomologyH∗(X,Z).
We call {Pw}w∈W the Schubert basis.
Since G is simply connected the group H2(X,Z) can be identified with the group of characters

X∗(T ) = {φ : T → C∗ hom. of algebraic groups}.

We recall the Chevalley-Pieri’s formula. Let λ ∈ H2(X,Z) a weight. Then

λ · Pw =
∑
w

γ−→v

〈λ, γ∨〉Pv.

Here w
γ−→ v, with w, v ∈ W and γ ∈ Φ+, means that wtγ = v and `(w)+ 1 = `(v), where tγ is the reflection

corresponding to γ. The pairing 〈 , 〉 is the usual pairing between weights and coroots and γ∨ denotes the
coroot corresponding to γ in the dual root system.

The Bruhat Graph

We can visualize the Chevalley-Pieri’s formula using a graph.
Let Φ be the root system of G and W be its Weyl group. We consider the Bruhat graph B of Φ:

• The vertices of the graph are the element of W ;

• for any v, w ∈ W such that w
γ−→ v there is an arrow labeled by γ in the graph.

Example. If G = SL3(C), then Φ is the root system of type A2 and W ∼= S3.
The group S3 is generated by the simple transposition s = (12) and t = (23). Let α and β be the simple roots
corresponding to s and t. Then the Bruhat graph B of Φ is the following:
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Theorem (Hard Lefschetz Theorem for the Flag Variety). Let λ be a dominant regular weight, i.e. (λ, α) > 0
for any positive root α. Then, for any 0 ≤ k ≤ n, λk : Hd−k(X,Q)→ Hd+k(X,Q) is an isomorphism.

The original proof of the Hard Lefschetz Theorem is geometric and holds for any smooth projective variety X
(and also for any singular variety, after replacing the cohomology H∗(X,Q) with the intersection cohomology
IH∗(X,Q)).

Remark. In general the map λk : Hd−k(X,Z)→ Hd+k(X,Z) is not an isomorphism for λ dominant regular.
As in the example above let G = SL3(C). Let $α, $β ∈ H2(X,Z) be the fundamental weights (i.e.
〈$α, α〉 = 1 and 〈$α, β〉 = 0 and similarly for $β).
Then any λ ∈ H2(X,Z) can be written as λ = a$α + b$β, with a, b ∈ Z. We have:

• det(λ : H2(X,Z)→ H4(X,Z)) = a2 + ab+ b2 is invertible if and only if

(a, b) ∈ {(±1, 0), (0,±1), (1,−1), (−1, 1)};

• det(λ3 : H2(X,Z)→ H4(X,Z)) = 3ab(a+ b) is never invertible.

However, if K is a field of characteristic > 3, then λ = $α + $β satisfies Lefschetz on H∗(X,K) =
H∗(X,Z)⊗K.

We say that λ satisfies Hard Lefschetz on H∗(X,K) if λk : Hd−k(X,K)→ Hd+k(X,K) is an isomorphism for
every 0 ≤ k ≤ d.

The Hard Lefschetz Theorem in Positive Characteristic

Theorem 1. Let K an infinite field of characteristic p > 0. Then if p > |Φ+| there exists λ ∈ H2(X,K)
satisfying Hard Lefschetz on H∗(X,K).

Sketch of the proof. We denote by {1, 2, . . . , n} the simple roots in W . Let Wi the subgroup of W generated
by the simple reflection si, si+1, . . . , sn.
Let λ =

∑n
i=1 xi$i a generic element of H2(X,K), with $i fundamental weights and xi ∈ K. The xi

can be thought as variables and the determinant of λk : Hn−k(X,C) → Hn+k(X,C) is then a polynomial
Dk(x1, . . . , xn).
Since K is infinite, it is enough to show that all the polynomials Dk, 0 ≤ k ≤ n are not identically zero.
We define the degenerate Bruhat Graph Bdeg as follows:

• the vertices of Bdeg are the same of B;

• we can write any w in a unique way as w(1)w(2) . . . w(n) where w(i) ∈ Wi has minimal length in its class
in Wi/Wi+1. Then the arrows in Bdeg are the arrows w

γ−→ v in B such that v(i) ≥ w(i) for any i.

The label of the new arrows is obtained replacing the label γ by its leading term in the lexicographic
order.

Example. The Degenerate Bruhat Graph Bdeg for G = SL3(C):
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The new graph Bdeg describes a new action of λ ∈ H2(X,K) on H∗(X,K) by λ ·Pw =
∑

w
γ−→v∈Bdeg〈λ, γ∨〉Pv,

If we compute the determinant of λk with respect of this new action we obtain the leading term (in the lexi-
cographic order) of Dk. Thus it remains to show that this new action satisfies the Hard Lefschetz Theorem.
Let’s assume G = SLn+1(C) (the other cases are analogous, after some work). Then Bdeg is isomorphic to a
product of strings. Now the theorem is an easy consequence of the following result.

Theorem ([Pro90], [Coo12]). The ring A = K[a1, . . . , an]/(ad11 , . . . , a
dn
n ) is a finite dimensional graded alge-

bra, where deg ai = 2. Then if char(K) >
∑

(di − 1) there exists λ ∈ A of degree 2 satisfying Hard Lefschetz
on A.

Remark. Conversely, if there exists λ ∈ H2(X,Z) satisfying the Hard Lefschetz Theorem on H∗(X,K) then
char(K) > |Φ+| unless we are in one of the following cases:

• X of type A2 (e.g. G = SL3(C))), hence |Φ+| = 3, and char(K) = 2;

• X of type B2 (e.g. G = SO5(C) = Sp4(C)), hence |Φ+| = 4, and char(K) = 3;

• X of type G2, hence |Φ+| = 6, and char(K) = 5.

Motivations in Representation Theory: Lusztig’s Conjecture

Let G a connected reductive algebraic group over an algebraic closed field K of characteristic p.
The Lusztig’s conjecture [Lus80] is a formula that allows to compute the characters of irreducible repre-
sentations of G over K in terms of the affine Kazhdan-Lusztig polynomials.
Lusztig’s conjecture is proven [AJS94] for p � n =rank(G), but the only explicit bounds known are huge
[Fie12] (at least p > nn

2
).

On the other hand Williamson [Wil13] found a family of counterexamples to the conjecture with p = O(cn)
and c = 1, 101 . . ..
We still do not know, between these two bounds, when Lusztigs conjecture starts to hold!
Via geometric approaches developed by Soergel, Fiebig, Riche-Williamson it seems likely that the hard Lef-
schetz theorem controls Lusztig’s conjecture to some extent, i.e. if the hard Lefschetz holds for the intersection
cohomology of certain Schubert varieties, then Lusztig’s conjecture holds.
Thus, Theorem 1 can be thought as the very first step in this direction: investigate Hard Lefschetz in positive
characteristic to refine the range where Lusztig’s conjecture holds.
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