The quest for bases of the intersection cohomology of Schubert varieties

Leonardo Patimo

University of Freiburg, Germany

New Connections in Representation Theory

Mooloolaba

13th February 2019

Basis in type \widetilde{A}_2

W Weyl group of type \widetilde{A}_2 .

Over \mathbb{Q} we have:

indecomposable objects in the Hecke category (aka indec. **Soergel bimodules**) (equivariant) intersection cohomology of Schubert varieties in the affine flag variety $SL_3(\mathbb{C}((t)))/I$

 $B_x \cong IH^{\bullet}_T(X_x, \mathbb{Q})$

Basis in type \widetilde{A}_2

A basis of $IH(X_x, \mathbb{Q})$ (x on the wall, $\ell(x)$ odd) is given by the following type of diagrams.

Basis in type \widetilde{A}_2

A basis of $IH(X_y, \mathbb{Q})$ (y out of the walls, y spherical) is given by the two following type of diagrams.

Our setting: Complex Grassmannian

 $Gr(k, N) = \{k \text{-dimensional subspaces of } \mathbb{C}^N\}.$ It is a smooth complex projective variety of dim k(N - k). What is $H^{\bullet}(Gr(k, N), \mathbb{Q})$?

Our setting: Complex Grassmannian

 $Gr(k, N) = \{k \text{-dimensional subspaces of } \mathbb{C}^N\}.$ It is a smooth complex projective variety of dim k(N - k). What is $H^{\bullet}(Gr(k, N), \mathbb{Q})$? To any tableau $\lambda \subseteq \prod_{k=1}^{n} \{N-k\}$ it corresponds a **Schubert** cell. $= \prod_{\lambda} \mapsto C_{\lambda} := \operatorname{Im} \begin{pmatrix} * & * & * & * & * \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ * & * & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \cong \mathbb{C}^{\ell(\lambda)}$ Example

 $\ell(\lambda) = \#\{\text{boxes in } \lambda\}$

Cohomology of Schubert varieties

Schubert cells give a cell decomposition:

$$\mathsf{Gr}(k, \mathsf{N}) = \coprod_{\lambda} \mathsf{C}_{\lambda}$$

Let $X_{\mu} = \overline{C_{\mu}}$ be a Schubert variety $\rightsquigarrow [X_{\mu}] \in H_{2\ell(\mu)}(Gr(k, N)).$

$$H_{\bullet}(\mathrm{Gr}(k,N),\mathbb{Q}) = \bigoplus_{\lambda} \mathbb{Q}[X_{\lambda}] \xrightarrow{\text{dualizing}} H^{\bullet}(\mathrm{Gr}(k,N),\mathbb{Q}) = \bigoplus_{\lambda} \mathbb{Q}S_{\lambda}$$

Taking dual basis of $\{[X_{\lambda}]\}\)$ we obtain a basis $\{S_{\lambda}\}\)$, with $S_{\lambda} \in H^{2\ell(\lambda)}(Gr(k, N))$, called **Schubert basis**

Cohomology of Schubert varieties

Schubert cells give a cell decomposition:

$$\mathsf{Gr}(k, \mathsf{N}) = \coprod_{\lambda} \mathsf{C}_{\lambda}$$

Let $X_{\mu} = \overline{C_{\mu}}$ be a Schubert variety $\rightsquigarrow [X_{\mu}] \in H_{2\ell(\mu)}(Gr(k, N)).$

$$H_{\bullet}(\mathrm{Gr}(k,N),\mathbb{Q}) = \bigoplus_{\lambda} \mathbb{Q}[X_{\lambda}] \xrightarrow{\mathsf{dualizing}} H^{\bullet}(\mathrm{Gr}(k,N),\mathbb{Q}) = \bigoplus_{\lambda} \mathbb{QS}_{\lambda}$$

Taking dual basis of $\{[X_{\lambda}]\}\)$ we obtain a basis $\{S_{\lambda}\}\)$, with $S_{\lambda} \in H^{2\ell(\lambda)}(Gr(k, N))$, called **Schubert basis**

Let $i_{\mu} : X_{\mu} \hookrightarrow Gr(k, N)$ be the inclusion. Via the pullback $i_{\mu}^* : H^{\bullet}(Gr(k, N), \mathbb{Q}) \to H^{\bullet}(X_{\mu}, \mathbb{Q})$ we get

$$H^{ullet}(X_{\mu},\mathbb{Q})=igoplus_{\lambda\subseteq\mu}\mathbb{Q}i_{\mu}^{*}\mathcal{S}_{\lambda}=igoplus_{\lambda\subseteq\mu}\mathbb{Q}\mathcal{S}_{\lambda}$$

Cohomology of Schubert varieties

Schubert cells give a cell decomposition:

$$\operatorname{Gr}(k, N) = \coprod_{\lambda} C_{\lambda}$$

Let $X_{\mu} = \overline{C_{\mu}}$ be a Schubert variety $\rightsquigarrow [X_{\mu}] \in H_{2\ell(\mu)}(Gr(k, N)).$

$$H_{\bullet}(\mathrm{Gr}(k,N),\mathbb{Q}) = \bigoplus_{\lambda} \mathbb{Q}[X_{\lambda}] \xrightarrow{\mathsf{dualizing}} H^{\bullet}(\mathrm{Gr}(k,N),\mathbb{Q}) = \bigoplus_{\lambda} \mathbb{QS}_{\lambda}$$

Taking dual basis of $\{[X_{\lambda}]\}\)$ we obtain a basis $\{S_{\lambda}\}\)$, with $S_{\lambda} \in H^{2\ell(\lambda)}(Gr(k, N))$, called **Schubert basis**

Let $i_{\mu} : X_{\mu} \hookrightarrow Gr(k, N)$ be the inclusion. Via the pullback $i_{\mu}^* : H^{\bullet}(Gr(k, N), \mathbb{Q}) \to H^{\bullet}(X_{\mu}, \mathbb{Q})$ we get

$$H^{ullet}(X_{\mu},\mathbb{Q})=igoplus_{\lambda\subseteq\mu}\mathbb{Q}i_{\mu}^{*}\mathcal{S}_{\lambda}=igoplus_{\lambda\subseteq\mu}\mathbb{Q}\mathcal{S}_{\lambda}$$

The T-equivariant story is analogous

The following sets are in bijections:

The following sets are in bijections:

Piece-wise linear paths from (0, k) to (N, N - k) with steps $(1, \pm 1)$.

The following sets are in bijections:

- Subtableaux of $\sum_{k=1}^{n} \left\{ (N-k) \right\}$
- Piece-wise linear paths from (0, k) to (N, N k) with steps $(1, \pm 1)$.

• elements of $\{0,1\}^N$ with k 0's.

The following sets are in bijections:

- Subtableaux of $\underbrace{} \left\{ (N-k) \right\}$
- Piece-wise linear paths from (0, k) to (N, N k) with steps $(1, \pm 1)$.

• elements of $\{0,1\}^N$ with k 0's.

10001100

Subsets of $\{1, \ldots, N\}$ with N - k elements $\{1, 5, 6\}$

The following sets are in bijections:

- Subtableaux of $\left\{ N-k \right\}$.
- Piece-wise linear paths from (0, k) to (N, N k) with steps $(1, \pm 1)$.

• elements of $\{0,1\}^N$ with k 0's.

10001100

Subsets of $\{1, \ldots, N\}$ with N - k elements $\{1, 5, 6\}$

• cosets
$$S_N/S_k \times S_{N-k}$$
.

$$\begin{pmatrix} 2 & & & & \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 5 & 6 & 2 & 3 & 4 & 7 & 8 \end{pmatrix}$$

The following sets are in bijections:

- Subtableaux of $\left\{ N-k \right\}$.
- Piece-wise linear paths from (0, k) to (N, N k) with steps $(1, \pm 1)$.

• elements of $\{0,1\}^N$ with k 0's.

10001100

Subsets of $\{1, \ldots, N\}$ with N - k elements $\{1, 5, 6\}$

$$\ \ \, \text{ cosets } S_N/S_k\times S_{N-k}.$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 5 & 6 & 2 & 3 & 4 & 7 & 8 \end{pmatrix}$$

Pieri's formula

The Schubert basis is an important tool to study $H^{\bullet}(Gr(k, N), \mathbb{Q})$ and $H^{\bullet}(X_{\mu}, \mathbb{Q})$

Let $S_{\Box} \in H^2(Gr(k, N), \mathbb{Q})$. Pieri's formula

$$\mathcal{S}_{\Box} \cdot \mathcal{S}_{\lambda} = \sum_{\substack{\mu \text{ tableau which can be} \\ ext{obtained by adding a box to } \lambda}} \mathcal{S}_{\mu}$$

Example

Littlewood-Richardson Rule

What about $S_{\lambda} \cdot S_{\mu}$ for arbitrary λ, μ ?

Littlewood-Richardson Rule

What about $S_{\lambda} \cdot S_{\mu}$ for arbitrary λ, μ ? Consider the following 7 puzzle pieces.

Littlewood-Richardson Rule

What about $S_{\lambda} \cdot S_{\mu}$ for arbitrary λ, μ ? Consider the following 7 puzzle pieces.

$$\mathcal{S}_\lambda\cdot\mathcal{S}_\mu=\sum_
u c^
u_{\lambda,\mu}\mathcal{S}_
u$$

 $\overline{}$ 0 1/1 1/1 0/70

where $c_{\lambda,\mu}^{\nu}$ is the number of puzzles with boundary

Here we regard λ, μ, ν as elements of $\{0, 1\}^N$.

Example of the puzzle rule

We have $S_{1001} \cdot S_{1001} = c_{1001,1001}^{1100} S_{1100} \in H^8(Gr(2,4))$ and $c_{1001,1001}^{1100} = 1$ because the only possible puzzle is:

Example of the puzzle rule

We have $S_{1001} \cdot S_{1001} = c_{1001,1001}^{1100} S_{1100} \in H^8(Gr(2,4))$ and $c_{1001,1001}^{1100} = 1$ because the only possible puzzle is:

There is more! Adding a new "equivariant piece" one can compute $S_{\lambda} \cdot S_{\mu} \in H^{\bullet}_{T}(Gr(k, N))$. (Knutson-Tao '05)

If X_{μ} is singular, Poincaré duality fails.

$$H^{\ell(\mu)-d}(X_{\mu},\mathbb{Q})
ot\cong H^{\ell(\mu)+d}(X_{\mu},\mathbb{Q})$$

If X_{μ} is singular, Poincaré duality fails.

$$H^{\ell(\mu)-d}(X_{\mu},\mathbb{Q}) \ncong H^{\ell(\mu)+d}(X_{\mu},\mathbb{Q})$$

We can embed the cohomology into the **intersection cohomology**:

$$H^{\bullet}(X_{\mu},\mathbb{Q})\subseteq IH^{\bullet-\ell(\mu)}(X_{\mu},\mathbb{Q}).$$

 $IH^{\bullet}(X_{\mu}, \mathbb{Q})$ can be thought of as a replacement of H^{\bullet} where Poincaré duality holds.

If X_{μ} is singular, Poincaré duality fails.

$$H^{\ell(\mu)-d}(X_{\mu},\mathbb{Q})
\cong H^{\ell(\mu)+d}(X_{\mu},\mathbb{Q})$$

We can embed the cohomology into the **intersection cohomology**: $u = (\chi - \eta) = u = -\ell(\eta)(\chi - \eta)$

$$H^{\bullet}(X_{\mu},\mathbb{Q})\subseteq IH^{\bullet-\ell(\mu)}(X_{\mu},\mathbb{Q}).$$

 $IH^{\bullet}(X_{\mu}, \mathbb{Q})$ can be thought of as a replacement of H^{\bullet} where Poincaré duality holds.

Motivation

 $IH(X_{\mu})$ gives information about the representation theory of $\mathfrak{sl}_{N}(\mathbb{C})$

If X_{μ} is singular, Poincaré duality fails.

$$H^{\ell(\mu)-d}(X_{\mu},\mathbb{Q})
\cong H^{\ell(\mu)+d}(X_{\mu},\mathbb{Q})$$

We can embed the cohomology into the **intersection cohomology**: $u = (\chi - \eta) = u = -\ell(\eta)(\chi - \eta)$

$$H^{\bullet}(X_{\mu},\mathbb{Q})\subseteq IH^{\bullet-\ell(\mu)}(X_{\mu},\mathbb{Q}).$$

 $IH^{\bullet}(X_{\mu}, \mathbb{Q})$ can be thought of as a replacement of H^{\bullet} where Poincaré duality holds.

Motivation

 $IH(X_{\mu})$ gives information about the representation theory of $\mathfrak{sl}_{N}(\mathbb{C})$

Question

Is there some sort of "Schubert basis" for $IH^{\bullet}(X_{\mu}, \mathbb{Q})$? Can we extend in a natural way $\{S_{\lambda}\}$ to a basis of $IH^{\bullet}(X_{\mu}, \mathbb{Q})$?

An example in Gr(2, 4)

Let $\mu = \bigoplus \subseteq \bigoplus$. $X_{\mu} = \{V \subseteq \mathbb{C}^{4} \mid \dim V = 2 \text{ and } \dim(V \cap \mathbb{C}^{2}) \ge 1\} \subseteq Gr(2, 4)$ X_{μ} is a singular variety of dim 3: It is the projective cone over a non-degenerate quadric $Y \subseteq \mathbb{P}^{3}(\mathbb{C})$.

An example in Gr(2, 4)

Let $\mu = \bigoplus \subseteq \bigoplus$. $X_{\mu} = \{V \subseteq \mathbb{C}^4 \mid \dim V = 2 \text{ and } \dim(V \cap \mathbb{C}^2) \ge 1\} \subseteq Gr(2, 4)$ X_{μ} is a singular variety of dim 3: It is the projective cone over a non-degenerate quadric $Y \subseteq \mathbb{P}^3(\mathbb{C})$.

An example in Gr(2, 4)

Let $\mu = \bigoplus \subseteq \bigoplus$. $X_{\mu} = \{ V \subseteq \mathbb{C}^4 \mid \dim V = 2 \text{ and } \dim(V \cap \mathbb{C}^2) \ge 1 \} \subseteq Gr(2, 4)$ X_{μ} is a singular variety of dim 3: It is the projective cone over a non-degenerate quadric $Y \subseteq \mathbb{P}^3(\mathbb{C})$.

The (Grassmannian) Kazhdan-Lusztig polynomial can be defined as

$$h_{\lambda,\mu}(v) = \sum_i \dim IC^{-i-\ell(\mu)}_{\mathcal{C}_\lambda}(X_\mu,\mathbb{Q})v^i.$$

The (Grassmannian) Kazhdan-Lusztig polynomial can be defined as

$$h_{\lambda,\mu}(\mathbf{v}) = \sum_i \dim IC_{\mathcal{C}_\lambda}^{-i-\ell(\mu)}(X_\mu,\mathbb{Q})\mathbf{v}^i.$$

Kazhdan-Lusztig '80:

 $h_{\lambda,\mu}(v)$ can be computed via a recursive formula.

The (Grassmannian) Kazhdan-Lusztig polynomial can be defined as

$$h_{\lambda,\mu}(v) = \sum_i \dim IC^{-i-\ell(\mu)}_{\mathcal{C}_\lambda}(X_\mu,\mathbb{Q})v^i.$$

 Kazhdan-Lusztig '80: h_{λ,μ}(v) can be computed via a recursive formula.
 Lascoux-Schützenberger '80: explicit not-recursive formula (in terms of LS binary trees) for h_{λ,μ}(v).

The (Grassmannian) Kazhdan-Lusztig polynomial can be defined as

$$h_{\lambda,\mu}(\mathbf{v}) = \sum_i \dim IC_{\mathcal{C}_\lambda}^{-i-\ell(\mu)}(X_\mu,\mathbb{Q})\mathbf{v}^i.$$

 Kazhdan-Lusztig '80: h_{λ,μ}(v) can be computed via a recursive formula.
 Lascoux-Schützenberger '80: explicit not-recursive formula (in terms of LS binary trees) for h_{λ,μ}(v).

A quote by **Bernstein**: "...I would say that if you can compute a polynomial P for intersection cohomologies in some case without a computer, then probably there is a **small resolution** which gives it..."

Small resolutions

A resolution of singularities $p: \widetilde{X} \to X$ is said **small** if

$$\forall r > 0: \quad \operatorname{codim}\{x \in X \mid \dim p^{-1}(x) = r\} > 2r.$$

Schubert varieties in Grassmannians are "very special" Schubert varieties:

Theorem (Zelevinsky '83)

All the Schubert varieties in Grassmannians admit a small resolution of singularities.

$$p \text{ small } \implies p_* \mathbb{Q}_{\widetilde{X}}[\dim X] \cong IC^{\bullet}(X, \mathbb{Q})$$
$$\implies H^{\bullet}(\widetilde{X}, \mathbb{Q}) = IH^{\bullet-\dim X}(X, \mathbb{Q}).$$

Dyck paths and strips

Definition

A **Dyck path** is a piecewise linear path consisting of the same number of segments \searrow and \nearrow , such that it remains below the horizontal line.

Example

This is **not** a Dyck path:

Dyck paths and strips

Definition

A **Dyck path** is a piecewise linear path consisting of the same number of segments \searrow and \nearrow , such that it remains below the horizontal line.

Example , , ,

A **Dyck strip** is obtained by taking the unitary boxes, tilted by 45° , with center on the integral coordinates of a Dyck path

Example

We reinterpret a tableau as a path:

We reinterpret a tableau as a path:

Let λ, μ be paths with $\lambda \leq \mu$. A **Dyck partition** is a partition of the region between λ and μ into Dyck strips.

Dyck partitions of Type 1

A Dyck partition **P** is said of **type 1** if: whenever a strip D contains a box just below a box in a strip C, then every box just above a box in D is in C.

Dyck partitions of Type 1

A Dyck partition **P** is said of **type 1** if: whenever a strip D contains a box just below a box in a strip C, then every box just above a box in D is in C.

We can reformulate LS results using **Dyck partitions** $|\mathbf{P}| =$ number of strips in **P**.

Theorem (Shigechi - Zinn-Justin '12)

Dyck partitions of Type 1 describes KL polynomials.

$$\sum_{\substack{ \mathsf{P} ext{ of type 1} \\ ext{ between } \lambda ext{ and } \mu }} v^{|\mathsf{P}|} = h_{\lambda,\mu}(v)$$

Singular Soergel bimodules

 $R = \mathbb{Q}[x_1, x_2, \dots, x_N] \curvearrowleft S_N$ acts by permutations. R^{S_N} is the subring of invariants. Then:

$$H^{ullet}_T(\operatorname{Gr}(k,N))=R\otimes_{R^{S_N}}R^{S_k imes S_{N-k}}.$$

where $T = (\mathbb{C}^*)^N$ acts on Gr(k, N).

Singular Soergel bimodules

 $R = \mathbb{Q}[x_1, x_2, \dots, x_N] \curvearrowleft S_N$ acts by permutations. R^{S_N} is the subring of invariants. Then:

$$H^{\bullet}_{T}(\mathrm{Gr}(k,N)) = R \otimes_{R^{S_N}} R^{S_k \times S_{N-k}}.$$

where $T = (\mathbb{C}^*)^N$ acts on Gr(k, N). We regard $IH_{\lambda} := IH_{T}^{\bullet}(X_{\lambda}, \mathbb{Q})$ via the inclusion $X_{\lambda} \hookrightarrow Gr(k, N)$ as a $H_{T}^{\bullet}(Gr(k, N))$ -module (or as a $(R, R^{S_k \times S_{N-k}})$ -bimodule). These bimodules are called **singular Soergel bimodules**.

Singular Soergel bimodules

 $R = \mathbb{Q}[x_1, x_2, \dots, x_N] \curvearrowleft S_N$ acts by permutations. R^{S_N} is the subring of invariants. Then:

$$H^{\bullet}_{T}(\mathrm{Gr}(k,N)) = R \otimes_{R^{S_N}} R^{S_k \times S_{N-k}}.$$

where $T = (\mathbb{C}^*)^N$ acts on Gr(k, N). We regard $IH_{\lambda} := IH_{T}^{\bullet}(X_{\lambda}, \mathbb{Q})$ via the inclusion $X_{\lambda} \hookrightarrow Gr(k, N)$ as a $H_{T}^{\bullet}(Gr(k, N))$ -module (or as a $(R, R^{S_k \times S_{N-k}})$ -bimodule). These bimodules are called **singular Soergel bimodules**.

Let $\lambda < \mu$. If we quotient out all morphisms factoring through

$$IH_{\lambda} \rightarrow IH_{\nu} \rightarrow IH_{\mu}$$
 for some $\nu < \lambda$

we have

$$\operatorname{Hom}_{\not<\lambda}^{\bullet}(IH_{\lambda}, IH_{\mu}) \cong \bigoplus_{i} R(-i)^{m_{i}} \text{ with } \sum_{i} m_{i}v^{i} = h_{\lambda,\mu}(v)$$

Morphisms of degree one

$$\mathsf{Hom}^{1}(\mathit{IH}_{\lambda},\mathit{IH}_{\mu}) \cong \begin{cases} \mathbb{Q} & \text{ if } \lambda \text{ and } \mu \text{ differ by a Dyck strip} \\ 0 & \text{ otherwise} \end{cases}$$

$$\{\mathsf{Dyck \ strips}\} \to \{\mathsf{morphisms \ of \ degree \ }1\}$$

 $D\mapsto f_D$

The map f_D can be explicitly constructed.

Morphisms of degree one

$$\mathsf{Hom}^{1}(\mathit{IH}_{\lambda},\mathit{IH}_{\mu}) \cong \begin{cases} \mathbb{Q} & \text{ if } \lambda \text{ and } \mu \text{ differ by a Dyck strip} \\ 0 & \text{ otherwise} \end{cases}$$

$$\{\mathsf{Dyck \ strips}\} \to \{\mathsf{morphisms \ of \ degree \ }1\}$$

 $D\mapsto f_D$

The map f_D can be explicitly constructed.

Morphisms of degree one

$$\mathsf{Hom}^{1}(\mathit{IH}_{\lambda}, \mathit{IH}_{\mu}) \cong \begin{cases} \mathbb{Q} & \text{ if } \lambda \text{ and } \mu \text{ differ by a Dyck strip} \\ 0 & \text{ otherwise} \end{cases}$$

$$\{\mathsf{Dyck \ strips}\} \to \{\mathsf{morphisms \ of \ degree \ }1\}$$

 $D \mapsto f_D$

The map f_D can be explicitly constructed.

Naive idea:

 $\left\{ \begin{array}{l} \text{Dyck partition} \\ \text{with } m \text{ elements} \end{array} \right\} \rightarrow \{ \text{morphisms of degree } m \}$ $\mathbf{P} = \{ D_1, D_2, \dots, D_m \} \mapsto f_{\mathbf{P}} := f_{D_1} \circ f_{D_2} \circ \dots f_{D_m}$

Dyck strips do not commute

Then

$$f_C \circ f_D \neq f_D \circ f_C \in \operatorname{Hom}^2(IH_{\lambda}, IH_{\mu}).$$

and $f_C \circ f_D - f_D \circ f_C$ is a non-zero map factoring through

$$IH_{\lambda}
ightarrow IH_{\emptyset} rac{f_{ au}}{
ightarrow} IH_{\mu}$$

where

Dyck strips do not commute

Then

$$f_C \circ f_D \neq f_D \circ f_C \in \operatorname{Hom}^2(IH_{\lambda}, IH_{\mu}).$$

and $f_C \circ f_D - f_D \circ f_C$ is a non-zero map factoring through

$$IH_{\lambda} \rightarrow IH_{\emptyset} \xrightarrow{f_{T}} IH_{\mu}$$
 where

In general, $f_{\mathbf{P}} := f_{D_1} \circ f_{D_2} \circ \ldots f_{D_k}$ not well defined.

A partial order on Dyck partitions

Let **P** and **Q** be Dyck partition, $\mathbf{P} \neq \mathbf{Q}$.

 $\mathbf{P}(h) :=$ set of strips of height h in \mathbf{P} .

 $h_0 :=$ largest index such that $\mathbf{P}(h_0) \neq \mathbf{Q}(h_0)$.

Then $\mathbf{P} \succ \mathbf{Q}$ if $\mathbf{P}(h_0)$ is finer than $\mathbf{Q}(h_0)$, i.e. if every strip of $\mathbf{P}(h_0)$ is contained in a strip of $\mathbf{Q}(h_0)$. Example

Construction of bases on morphisms spaces

Theorem (P. '19)

If $\mathbf{P} = \{D_1, D_2, \dots, D_m\}$ is a Dyck partition between λ and μ , then the map

$$f_{\mathbf{P}} = f_{D_1} \circ f_{D_2} \circ \ldots \circ f_{D_m} \in \operatorname{Hom}_{\not < \mu}^m(IH_{\mu}, IH_{\lambda}).$$

does not depend on the order up to smaller terms wrt \prec , i.e. up to something contained in $span\langle f_{\mathbf{Q}} | \mathbf{Q} \prec \mathbf{P} \rangle$.

The set

$$\left\{ f_{\mathbf{P}} \mid \begin{array}{c} \mathbf{P} \text{ Dyck partition of type 1} \\ \text{between } \lambda \text{ and } \mu \end{array} \right\}$$

is a basis of $\operatorname{Hom}_{\not<\lambda}(IH_{\lambda}, IH_{\mu})$ over R, for any choice of the order of the strips in **P**.

Construction of the bases of Intersection Cohomology

 S_{id} is the unity of the cohomology ring $H_T(X_{\lambda})$. Let $F_{\mathbf{P}} := f_{\mathbf{P}}(S_{id})$.

Corollary

The element $F_{\mathbf{P}} \in IH_{\mu}^{-\ell(\mu)+2|\mathbf{P}|}$ does not depend on the order chosen, up to smaller elements wrt \prec .

The set

$$\left\{ F_{\mathbf{P}} \mid \begin{array}{c} \mathbf{P} \text{ Dyck partition of type 1} \\ \text{between } \lambda \text{ and } \mu, \text{ for some } \lambda \leq \mu \end{array} \right\}$$

is a basis of IH_{μ} over R, for any choice of the order of the strips in ${\bf P}.$

Back to the example in Gr(2, 4)

Comparison with the Schubert basis

 $\langle -, - \rangle_{\mu}$ Poincaré pairing on IH_{μ} .

P Dyck partition of type 1 between ν and μ . For any $\lambda \leq \mu$:

$$\langle S_{\lambda}, F_{\mathbf{P}} \rangle = \begin{cases} 1 & \text{if } \nu = \lambda \text{ and } \mathbf{P} \text{ only consists of single boxes} \\ 0 & \text{otherwise} \end{cases}$$

Hence: if $\{F_{\mathbf{P}}^*\}$ is the dual basis to $\{F_{\mathbf{P}}\}$ then

 $\mathcal{S}_{\lambda} = \mathcal{F}_{\mathbf{Q}}^*$ where \mathbf{Q} consists only of single boxes.

Pieri's formula in intersection cohomology

Proposition
$$S_{\Box} \cdot F_{\mathbf{P}} = \sum_{\substack{C \text{ box that can} \\ be added to \mathbf{P}}} F_{\mathbf{P} \cup \{C\}}$$

where the order on $\mathbf{P} \cup \{C\}$ is the same order on \mathbf{P} plus C at the beginning.

Dyck partitions of Type 2

A Dyck partition **P** is said of **type 2** if: for any strip D that contains a box just below, SW or SE o a box in a strip C, then every box just below, SW or SE a box in Cbelongs either to D or C.

Remark

Between any two paths λ, μ there exists **at most one** Dyck partition of type 2.

Inverse KL polynomials

Inverse KL polynomials are related to the ordinary KL polynomials by the **inversion formula**:

$$\sum_{\mu} (-1)^{\ell(\mu)-\ell(\nu)} h_{\lambda,\mu}(\nu) g_{\mu,\nu}(\nu) = \delta_{\lambda,\nu}$$

Theorem (Brenti '02)

Dyck partitions of Type 2 describe inverse KL polynomials

$$\sum_{\substack{\mathbf{P} \text{ of type } 2\\ \text{between } \lambda \text{ and } \mu}} v^{|\mathbf{P}|} = g_{\lambda,\mu}(v)$$

Singular Rouquier Complexes

We can construct a complex of singular Soergel bimodules E_{μ} :

$$0 \rightarrow \bigoplus_{\lambda \in \Lambda_{i}} IH_{\lambda}(-i) \rightarrow \ldots \rightarrow \bigoplus_{\lambda \in \Lambda_{1}} IH_{\lambda}(-1) \rightarrow IH_{\mu} \rightarrow 0$$

which is **exact** everywhere but in the term IH_{μ} .

Singular Rouquier Complexes

We can construct a complex of singular Soergel bimodules E_{μ} :

$$0 \rightarrow \bigoplus_{\lambda \in \Lambda_{i}} IH_{\lambda}(-i) \rightarrow \ldots \rightarrow \bigoplus_{\lambda \in \Lambda_{1}} IH_{\lambda}(-1) \rightarrow IH_{\mu} \rightarrow 0$$

which is **exact** everywhere but in the term IH_{μ} .

Here
$$\Lambda_i = \left\{ \mu \leq \lambda \mid \begin{array}{c} \text{exists Dyck partition } \mathbf{P} \\ \text{of type 2 between } \lambda \text{ and } \mu \text{ with } |\mathbf{P}| = i \end{array} \right\}.$$

 $\mathit{IH}_{\lambda}(-i)$ occurs in $\mathit{E}_{\mu} \quad \Longleftrightarrow \quad \mathit{g}_{\lambda,\mu}(v) = v^i$

 E_{μ} is called **singular Rouquier complex**.

Example of a singular Rouquier complex

Example of a singular Rouquier complex

Thanks for your attention!