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Basis in type Ã2

W Weyl group of type Ã2.

Over Q we have:

indecomposable objects
in the Hecke category

(aka indec. Soergel bimodules)
=

(equivariant) intersection
cohomology of Schubert varieties

in the affine flag variety
SL3(C((t)))/I

Bx
∼= IH•T (Xx ,Q)



Basis in type Ã2

A basis of IH(Xx ,Q) (x on the wall, `(x) odd) is given by the
following type of diagrams.
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Basis in type Ã2

A basis of IH(Xy ,Q) (y out of the walls, y spherical) is given by
the two following type of diagrams.

U

... .....
.

... ...
i arcs



Our setting: Complex Grassmannian

Gr(k,N) = {k-dimensional subspaces of CN}.
It is a smooth complex projective variety of dim k(N − k).
What is H•(Gr(k ,N),Q)?

To any tableau λ ⊆

k︷ ︸︸ ︷}
(N − k) it corresponds a Schubert

cell.

Example

7→ Cλ := Im



∗ ∗ ∗ ∗ ∗
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
∗ ∗ 0 0 0
∗ ∗ 0 0 0
0 1 0 0 0
1 0 0 0 0


∼= C`(λ)

`(λ) = #{boxes in λ}
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Cohomology of Schubert varieties

Schubert cells give a cell decomposition:

Gr(k ,N) =
∐
λ

Cλ

Let Xµ = Cµ be a Schubert variety  [Xµ] ∈ H2`(µ)(Gr(k,N)).

H•(Gr(k ,N),Q) =
⊕
λ

Q[Xλ]
dualizing

H•(Gr(k ,N),Q) =
⊕
λ

QSλ

Taking dual basis of {[Xλ]} we obtain a basis {Sλ},
with Sλ ∈ H2`(λ)(Gr(k ,N)), called Schubert basis

Let iµ : Xµ ↪→ Gr(k ,N) be the inclusion.
Via the pullback i∗µ : H•(Gr(k ,N),Q)→ H•(Xµ,Q) we get

H•(Xµ,Q) =
⊕
λ⊆µ

Qi∗µSλ =
⊕
λ⊆µ

QSλ

The T -equivariant story is analogous
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Many equivalent combinatorial descriptions

The following sets are in bijections:

I Subtableaux of

k︷ ︸︸ ︷}
(N − k).

I Piece-wise linear paths from (0, k) to
(N,N − k) with steps (1,±1).

I elements of {0, 1}N with k 0’s. 10001100

I Subsets of {1, . . . ,N} with N − k el-
ements

{1, 5, 6}

I cosets SN/Sk × SN−k .

1 2 3 4 5 6 7 8

1 5 6 2 3 4 7 8


I . . .
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Pieri’s formula

The Schubert basis is an important tool to study H•(Gr(k,N),Q)
and H•(Xµ,Q)

Let S� ∈ H2(Gr(k ,N),Q).

Pieri’s formula

S� · Sλ =
∑

µ tableau which can be
obtained by adding a box to λ

Sµ

Example

S� · S = S + S



Littlewood-Richardson Rule

What about Sλ · Sµ for arbitrary λ, µ?

Consider the following 7 puzzle pieces.

0

0 0

0

00

1

1 1

1

11

1

0 0

1

10

01

1

0

0

1

Theorem (Knutson-Tao-Woodward ’04)

Sλ · Sµ =
∑
ν

cνλ,µSν

where cνλ,µ is the number of puzzles with boundary

λ µ

ν
Here we regard λ, µ, ν as elements of {0, 1}N .
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Example of the puzzle rule

We have S1001 · S1001 = c1100
1001,1001S1100 ∈ H8(Gr(2, 4))

and c1100
1001,1001 = 1 because the only possible puzzle is:

1 1 0 0

1

0

0

1

1

0

0

1

1

1 0

0

1 1 1 1
01 0

000

There is more! Adding a new “equivariant piece”
one can compute Sλ · Sµ ∈ H•T (Gr(k,N)).
(Knutson-Tao ’05)

1

0

0

1
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Intersection Cohomology of Schubert varieties

If Xµ is singular, Poincaré duality fails.

H`(µ)−d(Xµ,Q) 6∼= H`(µ)+d(Xµ,Q)

We can embed the cohomology into the intersection
cohomology:

H•(Xµ,Q) ⊆ IH•−`(µ)(Xµ,Q).

IH•(Xµ,Q) can be thought of as a replacement of H• where
Poincaré duality holds.

Motivation
IH(Xµ) gives information about the representation theory of slN(C)

Question
Is there some sort of “Schubert basis” for IH•(Xµ,Q)?
Can we extend in a natural way {Sλ} to a basis of IH•(Xµ,Q)?
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An example in Gr(2, 4)

Let µ = ⊆ .

Xµ = {V ⊆ C4 | dimV = 2 and dim(V ∩ C2) ≥ 1} ⊆ Gr(2, 4)
Xµ is a singular variety of dim 3:
It is the projective cone over a non-degenerate quadric Y ⊆ P3(C).

∅

H•(Xµ) =

6

4

2

0

?

∅

IH•(Xµ) =

3

1

−1

−3
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Kazhdan-Lusztig polynomial

The (Grassmannian) Kazhdan-Lusztig polynomial can be defined
as

hλ,µ(v) =
∑
i

dim IC
−i−`(µ)
Cλ

(Xµ,Q)v i .

I Kazhdan-Lusztig ’80:
hλ,µ(v) can be computed via a recursive formula.

I Lascoux-Schützenberger ’80:
explicit not-recursive formula (in terms of LS binary trees) for
hλ,µ(v).

A quote by Bernstein: “...I would say that if you can compute a
polynomial P for intersection cohomologies in some case without a
computer, then probably there is a small resolution which gives
it...”
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Small resolutions

A resolution of singularities p : X̃ → X is said small if

∀r > 0: codim{x ∈ X | dim p−1(x) = r} > 2r .

Schubert varieties in Grassmannians are “very special” Schubert
varieties:

Theorem (Zelevinsky ’83)

All the Schubert varieties in Grassmannians admit a small
resolution of singularities.

p small =⇒ p∗QX̃
[dimX ] ∼= IC •(X ,Q)

=⇒ H•(X̃ ,Q) = IH•−dimX (X ,Q).



Dyck paths and strips

Definition
A Dyck path is a piecewise linear path consisting of the same
number of segments ↘ and ↗, such that it remains below the
horizontal line.

Example
. , ,

This is not a Dyck path:



Dyck paths and strips

Definition
A Dyck path is a piecewise linear path consisting of the same
number of segments ↘ and ↗, such that it remains below the
horizontal line.

Example
. , ,

A Dyck strip is obtained by taking the unitary boxes, tilted by 45◦,
with center on the integral coordinates of a Dyck path

Example

, ,



We reinterpret a tableau as a path:

;

Let λ, µ be paths with λ ≤ µ. A Dyck partition is a partition of
the region between λ and µ into Dyck strips.

Example

λ

µ



We reinterpret a tableau as a path:

;

Let λ, µ be paths with λ ≤ µ. A Dyck partition is a partition of
the region between λ and µ into Dyck strips.

Example
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Dyck partitions of Type 1

A Dyck partition P is said of type 1 if:
whenever a strip D contains a box just below a box in a strip C ,
then every box just above a box in D is in C .

Type 1 Not Type 1

We can reformulate LS results using Dyck partitions
|P| = number of strips in P.

Theorem (Shigechi - Zinn-Justin ’12)

Dyck partitions of Type 1 describes KL polynomials.∑
P of type 1

between λ and µ

v |P| = hλ,µ(v)



Dyck partitions of Type 1

A Dyck partition P is said of type 1 if:
whenever a strip D contains a box just below a box in a strip C ,
then every box just above a box in D is in C .

Type 1 Not Type 1

We can reformulate LS results using Dyck partitions
|P| = number of strips in P.

Theorem (Shigechi - Zinn-Justin ’12)

Dyck partitions of Type 1 describes KL polynomials.∑
P of type 1

between λ and µ

v |P| = hλ,µ(v)



Singular Soergel bimodules

R = Q[x1, x2, . . . , xN ] x SN acts by permutations.
RSN is the subring of invariants. Then:

H•T (Gr(k ,N)) = R ⊗RSN RSk×SN−k .

where T = (C∗)N acts on Gr(k ,N).

We regard IHλ := IH•T (Xλ,Q) via the inclusion Xλ ↪→ Gr(k ,N) as
a H•T (Gr(k ,N))-module (or as a (R,RSk×SN−k )-bimodule).
These bimodules are called singular Soergel bimodules.

Let λ < µ. If we quotient out all morphisms factoring through

IHλ → IHν → IHµ for some ν < λ

we have

Hom•6<λ(IHλ, IHµ) ∼=
⊕
i

R(−i)mi with
∑
i

miv
i = hλ,µ(v)
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Morphisms of degree one

Hom1(IHλ, IHµ) ∼=

{
Q if λ and µ differ by a Dyck strip

0 otherwise

{Dyck strips} → {morphisms of degree 1}

D 7→ fD

The map fD can be explicitly constructed.

Naive idea:{
Dyck partition

with m elements

}
→ {morphisms of degree m}

P = {D1,D2, . . . ,Dm} 7→ fP := fD1 ◦ fD2 ◦ . . . fDm
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Dyck strips do not commute

µ

λ
C D

Then
fC ◦ fD 6= fD ◦ fC ∈ Hom2(IHλ, IHµ).

and fC ◦ fD − fD ◦ fC is a non-zero map factoring through

IHλ → IH∅
fT−→ IHµ where

T

In general, fP := fD1 ◦ fD2 ◦ . . . fDk
not well defined.



Dyck strips do not commute

µ

λ
C D

Then
fC ◦ fD 6= fD ◦ fC ∈ Hom2(IHλ, IHµ).

and fC ◦ fD − fD ◦ fC is a non-zero map factoring through

IHλ → IH∅
fT−→ IHµ where

T

In general, fP := fD1 ◦ fD2 ◦ . . . fDk
not well defined.



A partial order on Dyck partitions

Let P and Q be Dyck partition, P 6= Q.

P(h) := set of strips of height h in P.

h0 := largest index such that P(h0) 6= Q(h0).

Then P � Q if P(h0) is finer than Q(h0),
i.e. if every strip of P(h0) is contained in a strip of Q(h0).

Example

P
�

Q



Construction of bases on morphisms spaces

Theorem (P. ’19)

If P = {D1,D2, . . . ,Dm} is a Dyck partition between λ and µ,
then the map

fP = fD1 ◦ fD2 ◦ . . . ◦ fDm ∈ Homm
6<µ(IHµ, IHλ).

does not depend on the order up to smaller terms wrt ≺,
i.e. up to something contained in span〈fQ | Q ≺ P〉.

The set {
fP |

P Dyck partition of type 1
between λ and µ

}
is a basis of Hom 6<λ(IHλ, IHµ) over R, for any choice of the order
of the strips in P.



Construction of the bases of Intersection Cohomology

Sid is the unity of the cohomology ring HT (Xλ).
Let FP := fP(Sid).

Corollary

The element FP ∈ IH
−`(µ)+2|P|
µ does not depend on the order

chosen, up to smaller elements wrt ≺.

The set {
FP |

P Dyck partition of type 1
between λ and µ, for some λ ≤ µ

}
is a basis of IHµ over R, for any choice of the order of the strips in
P.



Back to the example in Gr(2, 4)

µ = ⊆ .

?

∅

3

1

−1

−3

= IH•(Xµ,Q) =



Comparison with the Schubert basis

〈−,−〉µ Poincaré pairing on IHµ.

P Dyck partition of type 1 between ν and µ. For any λ ≤ µ:

〈Sλ,FP〉 =

{
1 if ν = λ and P only consists of single boxes

0 otherwise

Hence: if {F ∗P} is the dual basis to {FP} then

Sλ = F ∗Q where Q consists only of single boxes.

Q



Pieri’s formula in intersection cohomology

Proposition S� · FP =
∑

C box that can
be added to P

FP∪{C}

where the order on P ∪ {C} is the same order on P plus C at the
beginning.

Example

If P = then

S� · FP = FQ1 + FQ2

where Q1 = and Q2 =



Dyck partitions of Type 2

A Dyck partition P is said of type 2 if:
for any strip D that contains a box just below, SW or SE o a box
in a strip C , then every box just below, SW or SE a box in C
belongs either to D or C .

Type 2 Not Type 2

Remark
Between any two paths λ, µ there exists at most one Dyck
partition of type 2.



Inverse KL polynomials

Inverse KL polynomials are related to the ordinary KL polynomials
by the inversion formula:∑

µ

(−1)`(µ)−`(ν)hλ,µ(v)gµ,ν(v) = δλ,ν

Theorem (Brenti ’02)

Dyck partitions of Type 2 describe inverse KL polynomials∑
P of type 2

between λ and µ

v |P| = gλ,µ(v)



Singular Rouquier Complexes

We can construct a complex of singular Soergel bimodules Eµ :

0→
⊕
λ∈Λi

IHλ(−i)→ . . .→
⊕
λ∈Λ1

IHλ(−1)→ IHµ → 0

which is exact everywhere but in the term IHµ.

Here Λi =

{
µ ≤ λ | exists Dyck partition P

of type 2 between λ and µ with |P| = i

}
.

IHλ(−i) occurs in Eµ ⇐⇒ gλ,µ(v) = v i

Eµ is called singular Rouquier complex.
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Example of a singular Rouquier complex

Let µ = . The singular Rouquier complex Eµ is:

−2Eµ
−1Eµ

0Eµ
−3Eµ

IH

IH (−1)

IH (−1)

IH∅(−1)

IH

⊕

⊕

0 0

fD

fC

f ∗V

fC

fD

fT

where

C D
V

and
T

.

From d2 = 0 follows fD ◦ fC − fC ◦ fD = fT ◦ f ∗V (up to scalar).
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Thanks for your attention!


