Extending Schubert calculus to intersection cohomology

Leonardo Patimo

University of Freiburg, Germany

RepNet Virtual Seminar

28th July 2020

Part 1: Schubert varieties in complex Grassmannians

Complex Grassmannian

 $Gr(k, N) = \{k \text{-dimensional subspaces of } \mathbb{C}^N\}.$ It is a smooth complex projective variety of dim k(N - k). What is $H^{\bullet}(Gr(k, N), \mathbb{Q})$?

Complex Grassmannian

 $Gr(k, N) = \{k \text{-dimensional subspaces of } \mathbb{C}^N\}.$ It is a smooth complex projective variety of dim k(N - k). What is $H^{\bullet}(Gr(k, N), \mathbb{Q})$? To any tableau $\lambda \subseteq \prod_{k=1}^{n} \{N-k\}$ it corresponds a **Schubert** cell. $= \operatorname{Im} \left(\begin{matrix} * & * & * & * & * \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ * & * & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{matrix} \right) \cong \mathbb{C}^{\ell(\lambda)}$ Example

 $\ell(\lambda) = \#\{\text{boxes in } \lambda\}$

Cohomology of Schubert varieties

Schubert cells give a cell decomposition:

$$\mathsf{Gr}(k, \mathsf{N}) = \coprod_{\lambda} \mathsf{C}_{\lambda}$$

Let $X_{\mu} = \overline{C_{\mu}}$ be a Schubert variety $\rightsquigarrow [X_{\mu}] \in H_{2\ell(\mu)}(Gr(k, N)).$

$$H_{\bullet}(\mathrm{Gr}(k,N),\mathbb{Q}) = \bigoplus_{\lambda} \mathbb{Q}[X_{\lambda}] \xrightarrow{\text{dualizing}} H^{\bullet}(\mathrm{Gr}(k,N),\mathbb{Q}) = \bigoplus_{\lambda} \mathbb{QS}_{\lambda}$$

Taking dual basis of $\{[X_{\lambda}]\}\)$ we obtain a basis $\{S_{\lambda}\}\)$, with $S_{\lambda} \in H^{2\ell(\lambda)}(Gr(k, N))$, called **Schubert basis**

Cohomology of Schubert varieties

Schubert cells give a cell decomposition:

$$\mathsf{Gr}(k, \mathsf{N}) = \coprod_{\lambda} \mathsf{C}_{\lambda}$$

Let $X_{\mu} = \overline{C_{\mu}}$ be a Schubert variety $\rightsquigarrow [X_{\mu}] \in H_{2\ell(\mu)}(Gr(k, N)).$

$$H_{\bullet}(\mathrm{Gr}(k,N),\mathbb{Q}) = \bigoplus_{\lambda} \mathbb{Q}[X_{\lambda}] \xrightarrow{\mathsf{dualizing}} H^{\bullet}(\mathrm{Gr}(k,N),\mathbb{Q}) = \bigoplus_{\lambda} \mathbb{QS}_{\lambda}$$

Taking dual basis of $\{[X_{\lambda}]\}\)$ we obtain a basis $\{S_{\lambda}\}\)$, with $S_{\lambda} \in H^{2\ell(\lambda)}(Gr(k, N))$, called **Schubert basis**

Let $i_{\mu} : X_{\mu} \hookrightarrow Gr(k, N)$ be the inclusion. Via the pullback $i_{\mu}^* : H^{\bullet}(Gr(k, N), \mathbb{Q}) \to H^{\bullet}(X_{\mu}, \mathbb{Q})$ we get

$$H^{ullet}(X_{\mu},\mathbb{Q})=igoplus_{\lambda\subseteq\mu}\mathbb{Q}i_{\mu}^{*}\mathcal{S}_{\lambda}=igoplus_{\lambda\subseteq\mu}\mathbb{Q}\mathcal{S}_{\lambda}$$

Cohomology of Schubert varieties

Schubert cells give a cell decomposition:

$$\operatorname{Gr}(k, N) = \coprod_{\lambda} C_{\lambda}$$

Let $X_{\mu} = \overline{C_{\mu}}$ be a Schubert variety $\rightsquigarrow [X_{\mu}] \in H_{2\ell(\mu)}(Gr(k, N)).$

$$H_{\bullet}(\mathrm{Gr}(k,N),\mathbb{Q}) = \bigoplus_{\lambda} \mathbb{Q}[X_{\lambda}] \xrightarrow{\mathsf{dualizing}} H^{\bullet}(\mathrm{Gr}(k,N),\mathbb{Q}) = \bigoplus_{\lambda} \mathbb{QS}_{\lambda}$$

Taking dual basis of $\{[X_{\lambda}]\}\)$ we obtain a basis $\{S_{\lambda}\}\)$, with $S_{\lambda} \in H^{2\ell(\lambda)}(Gr(k, N))$, called **Schubert basis**

Let $i_{\mu} : X_{\mu} \hookrightarrow Gr(k, N)$ be the inclusion. Via the pullback $i_{\mu}^* : H^{\bullet}(Gr(k, N), \mathbb{Q}) \to H^{\bullet}(X_{\mu}, \mathbb{Q})$ we get

$$H^{ullet}(X_{\mu},\mathbb{Q})=igoplus_{\lambda\subseteq\mu}\mathbb{Q}i_{\mu}^{*}\mathcal{S}_{\lambda}=igoplus_{\lambda\subseteq\mu}\mathbb{Q}\mathcal{S}_{\lambda}$$

The T-equivariant story is analogous

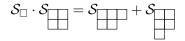
Pieri's formula

The Schubert basis is an important tool to study $H^{\bullet}(Gr(k, N), \mathbb{Q})$ and $H^{\bullet}(X_{\mu}, \mathbb{Q})$

Let $S_{\Box} \in H^2(Gr(k, N), \mathbb{Q})$. Pieri's formula

$$\mathcal{S}_{\Box} \cdot \mathcal{S}_{\lambda} = \sum_{\substack{\mu \text{ tableau which can be} \\ ext{obtained by adding a box to } \lambda}} \mathcal{S}_{\mu}$$

Example



Littlewood-Richardson Rule

We can write

$$\mathcal{S}_{\lambda}\cdot\mathcal{S}_{\mu}=\sum_{
u}c_{\lambda\mu}^{
u}\mathcal{S}_{
u}.$$

where $c_{\lambda\mu}^{
u}\in\mathbb{N}$ are the Littlewood-Richardson coefficients.

Littlewood-Richardson Rule

We can write

> . . .

$$\mathcal{S}_\lambda\cdot\mathcal{S}_\mu=\sum_
u c^
u_{\lambda\mu}\mathcal{S}_
u.$$

where $c_{\lambda\mu}^{
u}\in\mathbb{N}$ are the Littlewood-Richardson coefficients.

There are many combinatorial models for $c_{\lambda\mu}^{\nu}$.

- Littlewood-Richardson tableaux (i.e. semistandard skew-tableau of shape λ/μ with content ν whose word is a lattice.)
- Berenstein–Zelevinsky patterns
- Knutson-Tao honeycombs
- Knutson-Tao-Woodward puzzles

Intersection Cohomology of Schubert varieties

If X_{μ} is singular, Poincaré duality fails.

$$H^{\ell(\mu)-d}(X_{\mu},\mathbb{Q}) \ncong H^{\ell(\mu)+d}(X_{\mu},\mathbb{Q})$$

Intersection Cohomology of Schubert varieties

If X_{μ} is singular, Poincaré duality fails.

$$H^{\ell(\mu)-d}(X_{\mu},\mathbb{Q}) \ncong H^{\ell(\mu)+d}(X_{\mu},\mathbb{Q})$$

We can embed the cohomology into the **intersection cohomology**:

$$H^{ullet}(X_{\mu},\mathbb{Q})\subseteq IH^{ullet-\ell(\mu)}(X_{\mu},\mathbb{Q}).$$

 $IH^{\bullet}(X_{\mu}, \mathbb{Q})$ can be thought of as a replacement of H^{\bullet} where Poincaré duality holds.

Intersection Cohomology of Schubert varieties

If X_{μ} is singular, Poincaré duality fails.

$$H^{\ell(\mu)-d}(X_{\mu},\mathbb{Q}) \ncong H^{\ell(\mu)+d}(X_{\mu},\mathbb{Q})$$

We can embed the cohomology into the **intersection cohomology**:

$$H^{ullet}(X_{\mu},\mathbb{Q})\subseteq IH^{ullet-\ell(\mu)}(X_{\mu},\mathbb{Q}).$$

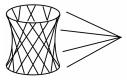
 $IH^{\bullet}(X_{\mu}, \mathbb{Q})$ can be thought of as a replacement of H^{\bullet} where Poincaré duality holds.

Question

Is there some sort of "Schubert basis" for $IH^{\bullet}(X_{\mu}, \mathbb{Q})$? Can we extend in a natural way $\{S_{\lambda}\}$ to a basis of $IH^{\bullet}(X_{\mu}, \mathbb{Q})$?

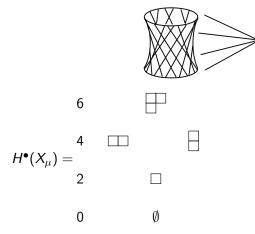
An example in Gr(2, 4)

Let $\mu = \bigoplus \subseteq \bigoplus$. $X_{\mu} = \{V \subseteq \mathbb{C}^{4} \mid \dim V = 2 \text{ and } \dim(V \cap \mathbb{C}^{2}) \ge 1\} \subseteq Gr(2, 4)$ X_{μ} is a singular variety of dim 3: It is the projective cone over a non-degenerate quadric $Y \subseteq \mathbb{P}^{3}(\mathbb{C})$.



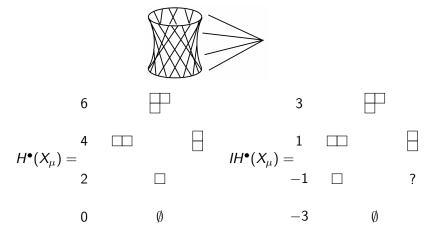
An example in Gr(2, 4)

Let $\mu = \bigoplus \subseteq \bigoplus$. $X_{\mu} = \{V \subseteq \mathbb{C}^4 \mid \dim V = 2 \text{ and } \dim(V \cap \mathbb{C}^2) \ge 1\} \subseteq Gr(2, 4)$ X_{μ} is a singular variety of dim 3: It is the projective cone over a non-degenerate quadric $Y \subseteq \mathbb{P}^3(\mathbb{C})$.



An example in Gr(2, 4)

Let $\mu = \bigoplus \subseteq \bigoplus$. $X_{\mu} = \{ V \subseteq \mathbb{C}^4 \mid \dim V = 2 \text{ and } \dim(V \cap \mathbb{C}^2) \ge 1 \} \subseteq Gr(2, 4)$ X_{μ} is a singular variety of dim 3: It is the projective cone over a non-degenerate quadric $Y \subseteq \mathbb{P}^3(\mathbb{C})$.



The (Grassmannian) **Kazhdan-Lusztig polynomial** can be defined as the Poincaré polynomials of the stalks of the IC sheaf.

$$h_{\lambda,\mu}(v) = \sum_i \dim IC_{C_\lambda}^{-i-\ell(\mu)}(X_\mu,\mathbb{Q})v^i.$$

The (Grassmannian) **Kazhdan-Lusztig polynomial** can be defined as the Poincaré polynomials of the stalks of the IC sheaf.

$$h_{\lambda,\mu}(v) = \sum_i \dim IC_{C_\lambda}^{-i-\ell(\mu)}(X_\mu,\mathbb{Q})v^i.$$

Kazhdan-Lusztig '80:

 $h_{\lambda,\mu}(v)$ can be computed via a recursive formula in the Hecke algebra of S_N .

The (Grassmannian) **Kazhdan-Lusztig polynomial** can be defined as the Poincaré polynomials of the stalks of the IC sheaf.

$$h_{\lambda,\mu}(v) = \sum_i \dim IC_{C_\lambda}^{-i-\ell(\mu)}(X_\mu,\mathbb{Q})v^i.$$

Kazhdan-Lusztig '80:

 $h_{\lambda,\mu}(v)$ can be computed via a recursive formula in the Hecke algebra of S_N .

Lascoux-Schützenberger '80:

explicit not-recursive formula (in terms of LS binary trees) for $h_{\lambda,\mu}(\mathbf{v})$.

The (Grassmannian) **Kazhdan-Lusztig polynomial** can be defined as the Poincaré polynomials of the stalks of the IC sheaf.

$$h_{\lambda,\mu}(v) = \sum_i \dim IC_{C_\lambda}^{-i-\ell(\mu)}(X_\mu,\mathbb{Q})v^i.$$

Kazhdan-Lusztig '80:

 $h_{\lambda,\mu}(v)$ can be computed via a recursive formula in the Hecke algebra of S_N .

```
    Lascoux-Schützenberger '80:
explicit not-recursive formula (in terms of LS binary trees) for
h<sub>λ,μ</sub>(v).
```

A quote by **Bernstein**: "...I would say that if you can compute a polynomial P for intersection cohomologies in some case without a computer, then probably there is a **small resolution** which gives it..."

Small resolutions

A resolution of singularities $p: \widetilde{X} \to X$ is said small if

$$\forall r > 0: \quad \operatorname{codim}\{x \in X \mid \dim p^{-1}(x) = r\} > 2r.$$

Schubert varieties in Grassmannians are "very special" Schubert varieties:

Theorem (Zelevinsky '83)

All the Schubert varieties in Grassmannians admit a small resolution of singularities.

$$p \text{ small } \implies p_* \mathbb{Q}_{\widetilde{X}}[\dim X] \cong IC^{\bullet}(X, \mathbb{Q})$$
$$\implies H^{\bullet}(\widetilde{X}, \mathbb{Q}) = IH^{\bullet-\dim X}(X, \mathbb{Q}).$$

Dyck paths and strips

Definition

A **Dyck path** is a piecewise linear path consisting of the same number of segments \searrow and \nearrow , such that it remains below the horizontal line.

Example

This is **not** a Dyck path:

Dyck paths and strips

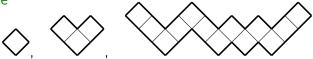
Definition

A **Dyck path** is a piecewise linear path consisting of the same number of segments \searrow and \nearrow , such that it remains below the horizontal line.

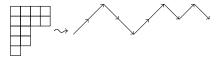
Example , , ,

A **Dyck strip** is obtained by taking the unitary boxes, tilted by 45° , with center on the integral coordinates of a Dyck path

Example

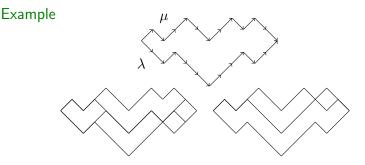


We reinterpret a tableau as a path:



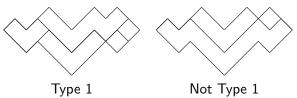
We reinterpret a tableau as a path:

Let λ, μ be paths with $\lambda \leq \mu$. A **Dyck partition** is a partition of the region between λ and μ into Dyck strips.



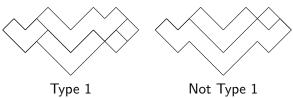
Dyck partitions of Type 1

A Dyck partition P is said of **type 1** if given a strip D, only bigger strips are placed on top of it.



Dyck partitions of Type 1

A Dyck partition P is said of **type 1** if given a strip D, only bigger strips are placed on top of it.



We can reformulate LS results using **Dyck partitions** |P| = number of strips in P.

Theorem (Shigechi - Zinn-Justin '12)

Dyck partitions of Type 1 describes KL polynomials.

$$\sum_{\substack{\mathsf{P} ext{ of type 1} \\ ext{ between } \lambda ext{ and } \mu}}
u^{|\mathsf{P}|} = h_{\lambda,\mu}(
u)$$

Singular Soergel bimodules

 $R = \mathbb{Q}[x_1, x_2, \dots, x_N] \frown S_N$ acts by permutations. R^{S_N} is the subring of invariants. Then:

$$H^{\bullet}_{T}(\mathrm{Gr}(k,N))=R\otimes_{R^{S_{N}}}R^{S_{k}\times S_{N-k}}$$

where $T = (\mathbb{C}^*)^N$ acts on Gr(k, N).

Singular Soergel bimodules

 $R = \mathbb{Q}[x_1, x_2, \dots, x_N] \curvearrowleft S_N$ acts by permutations. R^{S_N} is the subring of invariants. Then:

$$H^{\bullet}_{T}(\mathrm{Gr}(k,N)) = R \otimes_{R^{S_N}} R^{S_k \times S_{N-k}}$$

where $T = (\mathbb{C}^*)^N$ acts on Gr(k, N). We regard $IH_{\lambda} := IH_{T}^{\bullet}(X_{\lambda}, \mathbb{Q})$ via the inclusion $X_{\lambda} \hookrightarrow Gr(k, N)$ as a $H_{T}^{\bullet}(Gr(k, N))$ -module (or as a $(R, R^{S_k \times S_{N-k}})$ -bimodule). These bimodules are called **singular Soergel bimodules**.

Singular Soergel bimodules

 $R = \mathbb{Q}[x_1, x_2, \dots, x_N] \frown S_N$ acts by permutations. R^{S_N} is the subring of invariants. Then:

$$H^{\bullet}_{T}(\mathrm{Gr}(k,N)) = R \otimes_{R^{S_N}} R^{S_k \times S_{N-k}}.$$

where $T = (\mathbb{C}^*)^N$ acts on Gr(k, N). We regard $IH_{\lambda} := IH_{T}^{\bullet}(X_{\lambda}, \mathbb{Q})$ via the inclusion $X_{\lambda} \hookrightarrow Gr(k, N)$ as a $H_{T}^{\bullet}(Gr(k, N))$ -module (or as a $(R, R^{S_k \times S_{N-k}})$ -bimodule). These bimodules are called **singular Soergel bimodules**.

Existence of small resolutions \implies Every IH_{λ} can be realized as

$$IH_{\lambda} \cong R \otimes_{R^{l_1}} R^{l_2} \otimes_{R^{l_3}} R^{l_4} \otimes \ldots \otimes R^{S_k \times S_{N-k}}$$

for some parabolic subgroups $I_i \subset S_N$.

Soergel bimodules and KL polynomials

Let $\lambda \subset \mu$. If we quotient out all morphisms factoring through

$$IH_{\lambda} \rightarrow IH_{\nu} \rightarrow IH_{\mu}$$
 for some $\nu \subset \lambda$

we have

$$\operatorname{Hom}_{\not<\lambda}^{\bullet}(IH_{\lambda}, IH_{\mu}) \cong \bigoplus_{i} R(-i)^{m_{i}} \text{ with } \sum_{i} m_{i}v^{i} = h_{\lambda,\mu}(v)$$

Soergel bimodules and KL polynomials

Let $\lambda \subset \mu$. If we quotient out all morphisms factoring through

$$IH_{\lambda} \rightarrow IH_{\nu} \rightarrow IH_{\mu}$$
 for some $\nu \subset \lambda$

we have

$$\operatorname{Hom}_{\not\prec\lambda}^{\bullet}(IH_{\lambda}, IH_{\mu}) \cong \bigoplus_{i} R(-i)^{m_{i}} \text{ with } \sum_{i} m_{i}v^{i} = h_{\lambda,\mu}(v)$$

Example:

 $\operatorname{Hom}^{1}(IH_{\lambda}, IH_{\mu}) \cong \begin{cases} \mathbb{Q} & \text{ if } \lambda \text{ and } \mu \text{ differ by a Dyck strip} \\ 0 & \text{ otherwise} \end{cases}$

Morphisms of degree one

$$\mathsf{Hom}^{1}(\mathit{IH}_{\lambda},\mathit{IH}_{\mu}) \cong \begin{cases} \mathbb{Q} & \text{ if } \lambda \text{ and } \mu \text{ differ by a Dyck strip} \\ 0 & \text{ otherwise} \end{cases}$$

$$\{\mathsf{Dyck \ strips}\} \to \{\mathsf{morphisms \ of \ degree \ }1\}$$

 $D\mapsto f_D$

The map f_D can be explicitly constructed.

Morphisms of degree one

$$\mathsf{Hom}^{1}(\mathit{IH}_{\lambda}, \mathit{IH}_{\mu}) \cong \begin{cases} \mathbb{Q} & \text{ if } \lambda \text{ and } \mu \text{ differ by a Dyck strip} \\ 0 & \text{ otherwise} \end{cases}$$

$$\{\mathsf{Dyck \ strips}\} \to \{\mathsf{morphisms \ of \ degree} \ 1\}$$

 $D\mapsto f_D$

The map f_D can be explicitly constructed.

Naive idea:

$$\left\{ \begin{array}{l} \text{Dyck partition} \\ \text{with } m \text{ elements} \end{array} \right\} \rightarrow \{ \text{morphisms of degree } m \}$$
$$\mathsf{P} = \{ D_1, D_2, \dots, D_m \} \mapsto f_{\mathsf{P}} := f_{D_1} \circ f_{D_2} \circ \dots f_{D_m}$$

Dyck strips do not commute

Then

$$f_C \circ f_D \neq f_D \circ f_C \in \operatorname{Hom}^2(IH_{\lambda}, IH_{\mu}).$$

and $f_C \circ f_D - f_D \circ f_C$ is a non-zero map factoring through

$$IH_{\lambda}
ightarrow IH_{\emptyset} rac{f_{ au}}{
ightarrow} IH_{\mu}$$

where

Dyck strips do not commute

Then

$$f_C \circ f_D \neq f_D \circ f_C \in \operatorname{Hom}^2(IH_{\lambda}, IH_{\mu}).$$

and $f_C \circ f_D - f_D \circ f_C$ is a non-zero map factoring through

$$IH_{\lambda} \rightarrow IH_{\emptyset} \xrightarrow{f_{T}} IH_{\mu}$$
 where

In general, $f_{\mathsf{P}} := f_{D_1} \circ f_{D_2} \circ \ldots f_{D_k}$ not well defined.

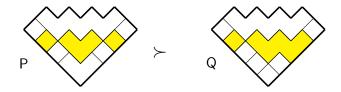
A partial order on Dyck partitions

Let P and Q be Dyck partition, $P \neq Q$.

P(h) := set of strips of height h in P.

 $h_0 :=$ largest index such that $P(h_0) \neq Q(h_0)$.

Then $P \succ Q$ if $P(h_0)$ is finer than $Q(h_0)$, i.e. if every strip of $P(h_0)$ is contained in a strip of $Q(h_0)$. Example



Construction of bases on morphisms spaces

Theorem (P. '19)

If $\mathsf{P} = \{D_1, D_2, \dots, D_m\}$ is a Dyck partition between λ and μ , then the map

$$f_{\mathsf{P}} = f_{D_1} \circ f_{D_2} \circ \ldots \circ f_{D_m} \in \mathsf{Hom}^m_{\not < \mu}(IH_\mu, IH_\lambda).$$

does not depend on the order up to smaller terms wrt \prec , i.e. up to something contained in $span\langle f_Q \mid Q \prec P \rangle$.

The set

$$\begin{cases} f_{\mathsf{P}} \mid & \mathsf{P} \text{ Dyck partition of type 1} \\ & \text{between } \lambda \text{ and } \mu \end{cases}$$

is a basis of $\operatorname{Hom}_{\not<\lambda}(IH_{\lambda}, IH_{\mu})$ over R, for any choice of the order of the strips in P.

Construction of the bases of Intersection Cohomology

 S_{id} is the unity of the cohomology ring $H_T(X_{\lambda})$. Let $F_P := f_P(S_{id})$.

Corollary

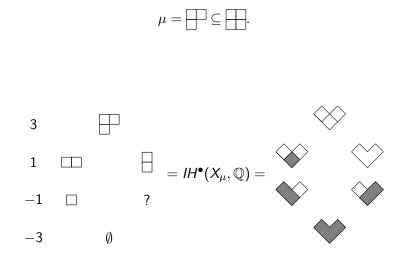
The element $F_{\rm P} \in IH_{\mu}^{-\ell(\mu)+2|{\rm P}|}$ does not depend on the order chosen, up to smaller elements wrt \prec .

The set

$$\left\{ F_{\mathsf{P}} \mid \begin{array}{c} \mathsf{P} \text{ Dyck partition of type 1} \\ \text{between } \lambda \text{ and } \mu, \text{ for some } \lambda \leq \mu \end{array} \right\}$$

is a basis of IH_{μ} over R, for any choice of the order of the strips in P.

Back to the example in Gr(2, 4)



Comparison with the Schubert basis

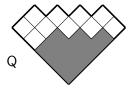
 $\langle -, - \rangle_{\mu}$ Poincaré pairing on IH_{μ} .

P Dyck partition of type 1 between ν and μ . For any $\lambda \leq \mu$:

$$\langle S_{\lambda}, F_{\mathsf{P}} \rangle = \begin{cases} 1 & \text{if } \nu = \lambda \text{ and } \mathsf{P} \text{ only consists of single boxes} \\ 0 & \text{otherwise} \end{cases}$$

Hence: if $\{F_P^*\}$ is the dual basis to $\{F_P\}$ then

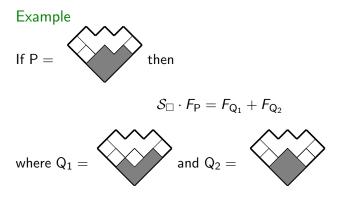
 $\mathcal{S}_{\lambda} = \mathcal{F}_{\mathsf{Q}}^*$ where Q consists only of single boxes.



Pieri's formula in intersection cohomology

Proposition
$$S_{\Box} \cdot F_{P} = \sum_{\substack{C \text{ box that can} \\ be added to P}} F_{P \cup \{C\}}$$

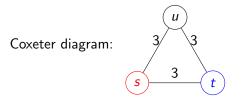
where the order on $P \cup \{C\}$ is the same order on P plus C at the beginning.

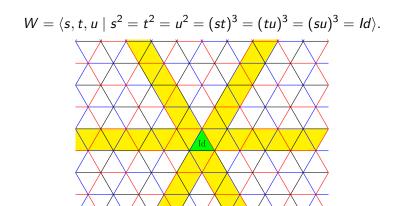


Part 2: the group \widetilde{A}_2

joint with Nicolas Libedinsky

W affine Weyl group of type A_2 .





Schubert varieties for \widetilde{A}_2

Let $\mathcal{F}I = SL_3(\mathbb{C}((t))) / \text{Iw}$ be the *affine flag variety* where

$$\mathrm{Iw} = \left\{ \begin{pmatrix} * & * & * \\ a & * & * \\ b & c & * \end{pmatrix} \in SL_3(\mathbb{C}[[t]]) \mid a, b, c \in t\mathbb{C}[[t]] \right\}$$

Bruhat decomposition:

$$\mathcal{F}l^{\circ} = \coprod_{y \in W} \operatorname{Iw} \cdot y \operatorname{Iw}$$

Schubert varieties for \widetilde{A}_2

Let $\mathcal{F}I = SL_3(\mathbb{C}((t))) / \text{Iw}$ be the *affine flag variety* where

$$\mathrm{Iw} = \left\{ \begin{pmatrix} * & * & * \\ \mathsf{a} & * & * \\ \mathsf{b} & \mathsf{c} & * \end{pmatrix} \in SL_3(\mathbb{C}[[t]]) \mid \mathsf{a}, \mathsf{b}, \mathsf{c} \in t\mathbb{C}[[t]] \right\}$$

Bruhat decomposition:

$$\mathcal{F}l^{\circ} = \coprod_{y \in W} \operatorname{Iw} \cdot y \operatorname{Iw}$$

The Schubert variety $X_y = \overline{Iw \cdot yIw}$ is a projective (usually singular) algebraic variety of dim $\ell(y)$. As in the first part, we are interested in $IH^{\bullet}(X_y)$.

Connections with representation theory

Geometry of Schubert varieties

Representation Theory

characters of simple $SL_3(\mathbb{C})$ -modules

characters of tilting $U_q(\mathfrak{sl}_3)$ -modules at q root of unity

[Lusztig] $IH^{ullet}(X_y,\mathbb{Q})\sim$ KL pol. $h_{x,y}(v)$ [Soergel]

Connections with representation theory

Geometry of Schubert varieties

Representation Theory

characters of simple $SL_3(\mathbb{C})$ -modules

characters of tilting $\mathcal{U}_q(\mathfrak{sl}_3)$ -modules at q root of unity

Also in this case we have

$$H^{ullet}(X_y,\mathbb{Q})\subseteq IH^{ullet-\ell(y)}(X_y,\mathbb{Q})$$

We want to extend the Schubert basis from $H^{\bullet}(X_y, \mathbb{Q})$ to $IH^{\bullet}(X_y, \mathbb{Q})$.

$$IH^{\bullet}(X_{y},\mathbb{Q}) \xrightarrow{\mathsf{KL pol.}} h_{x,y}(v) \xrightarrow{\mathfrak{l}_{\mathsf{Lusztigl}}} \mathfrak{l}_{\mathsf{So}_{\mathsf{ergelj}}}$$

Soergel bimodules for \widetilde{A}_2

Let $R = \mathbb{Q}[\alpha_s, \alpha_t, \alpha_u]$ (it is a polynomial ring with deg $(\alpha_i) = 2$).

There is an action of W on R associated to the Cartan matrix

$$(\alpha_i, \alpha_j) = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

Example: $s(\alpha_u) = \alpha_u - (\alpha_s, \alpha_u)\alpha_s = \alpha_u + \alpha_s$

Soergel bimodules for \widetilde{A}_2

Let $R = \mathbb{Q}[\alpha_s, \alpha_t, \alpha_u]$ (it is a polynomial ring with deg $(\alpha_i) = 2$).

There is an action of W on R associated to the Cartan matrix

$$(\alpha_i, \alpha_j) = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

Example:
$$s(\alpha_u) = \alpha_u - (\alpha_s, \alpha_u)\alpha_s = \alpha_u + \alpha_s$$

For every reduced expression $y = st \dots u$ we can realize $IH_y := IH^{\bullet}_T(X_y, \mathbb{Q})$ as a direct summand of the Bott-Samelson bimodule

$$BS(\underline{st\ldots u}) = R \otimes_{R^s} R \otimes_{R^t} R \otimes \ldots \otimes_{R^u} R(\ell(y))$$

Soergel bimodules for \widetilde{A}_2

Let $R = \mathbb{Q}[\alpha_s, \alpha_t, \alpha_u]$ (it is a polynomial ring with deg $(\alpha_i) = 2$).

There is an action of W on R associated to the Cartan matrix

$$(\alpha_i, \alpha_j) = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

Example:
$$s(\alpha_u) = \alpha_u - (\alpha_s, \alpha_u)\alpha_s = \alpha_u + \alpha_s$$

For every reduced expression $y = st \dots u$ we can realize $IH_y := IH^{\bullet}_T(X_y, \mathbb{Q})$ as a direct summand of the Bott-Samelson bimodule

$$BS(\underline{st\ldots u}) = R \otimes_{R^s} R \otimes_{R^t} R \otimes \ldots \otimes_{R^u} R(\ell(y))$$

Example: *IH*_{sts} is a summand (as a *R*-bimodule) of

$$BS(\underline{sts}) = R \otimes_{R^s} R \otimes_{R^t} R \otimes_{R^s} R(3) \cong IH_{sts} \oplus IH_s$$

Light leaves morphisms

Morphisms between Bott-Samelson bimodules are well understood. Let $y \le w$. Let $\underline{w} = s_1 s_2 \dots s_k$ reduced expression. For $e \in \{0, 1\}^k$ we write $\underline{w}^e := s_1^{e_1} s_2^{e_2} \dots s_k^{e_k}$ **Example:** <u>sts</u>¹⁰⁰ = $s^1 t^0 s^0 = s$.

Light leaves morphisms

Morphisms between Bott-Samelson bimodules are well understood. Let $y \le w$. Let $\underline{w} = s_1 s_2 \dots s_k$ reduced expression. For $e \in \{0, 1\}^k$ we write $\underline{w}^e := s_1^{e_1} s_2^{e_2} \dots s_k^{e_k}$ **Example:** <u>sts</u>¹⁰⁰ = $s^1 t^0 s^0 = s$.

Theorem (Libedinsky '07, Elias-Williamson '13)

$$\mathsf{Hom}_{\not\prec y}(BS(\underline{y}),BS(\underline{w})) = \bigoplus_{\underline{w}^e = y} \mathbb{Q}LL_{\underline{w},e}$$

 $LL_{\underline{w},e}$ is a map that can be constructed algorithmically out of \underline{w} and e.

Light leaves morphisms

Morphisms between Bott-Samelson bimodules are well understood. Let $y \le w$. Let $\underline{w} = s_1 s_2 \dots s_k$ reduced expression. For $e \in \{0, 1\}^k$ we write $\underline{w}^e := s_1^{e_1} s_2^{e_2} \dots s_k^{e_k}$ **Example:** <u>sts</u>¹⁰⁰ = $s^1 t^0 s^0 = s$.

Theorem (Libedinsky '07, Elias-Williamson '13)

$$\mathsf{Hom}_{\not< y}(BS(\underline{y}), BS(\underline{w})) = \bigoplus_{\underline{w}^e = y} \mathbb{Q}LL_{\underline{w}, e}$$

 $LL_{\underline{w},e}$ is a map that can be constructed algorithmically out of \underline{w} and e.

Question

Can we find a subset of $\{LL_{\underline{w},e}\}$ that gives a basis when restricted to the summand $IH_w \subset BS(\underline{w})$?

Morphisms diagrammatically

To depict morphisms between Bott-Samelson, it is very convenient to use diagrams.

Morphisms diagrammatically

To depict morphisms between Bott-Samelson, it is very convenient to use diagrams.

$$BS(\underline{s}) = R \otimes_{R^{s}} R$$

$$\uparrow \\ BS(\emptyset) = R$$

$$BS(\underline{ss}) = R \otimes_{R^{s}} R \otimes_{R^{s}} R$$

$$\uparrow \\ BS(\underline{ss}) = R \otimes_{R^{s}} R \otimes_{R^{s}} R$$

$$\uparrow \\ BS(\underline{ss}) = R \otimes_{R^{s}} R$$

$$\uparrow \\ f \otimes 1 \otimes g$$

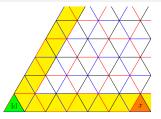
$$\uparrow \\ f \otimes g$$

Example depicts a morphism $BS(\underline{s}) \rightarrow BS(\underline{sts})$

(which is actually $LL_{\underline{sts},100}$).

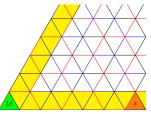
Relations on light leaves on the walls

The elements on the walls (in yellow in the picture) have a **unique reduced expression** of the form *stustu*...



Relations on light leaves on the walls

The elements on the walls (in yellow in the picture) have a **unique reduced expression** of the form *stustu*...



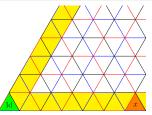
For x on the wall, post-composing with idempotent e_x of IH_x

$$BS(\underline{y}) \xrightarrow{LL_{\underline{x},e}} BS(\underline{x}) \xrightarrow{e_x} IH_x$$

we obtain the following relations on the set $\{LL_{\underline{x},e}\}$.

Relations on light leaves on the walls

The elements on the walls (in yellow in the picture) have a **unique reduced expression** of the form *stustu*...



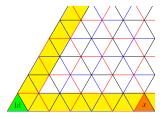
For x on the wall, post-composing with idempotent e_x of IH_x

$$BS(\underline{y}) \xrightarrow{LL_{\underline{x},e}} BS(\underline{x}) \xrightarrow{e_x} IH_x$$

we obtain the following relations on the set $\{LL_{x,e}\}$.

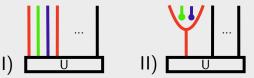
Everything with two cups vanishes.

Basis in type \widetilde{A}_2 (on the walls)



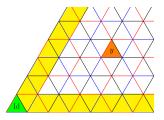
Theorem (Libedinsky-P. '20)

A basis of IH_x (x on the wall, $\ell(x)$ odd) is given by the following type of light leaves.



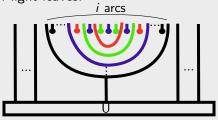
where the box with U is a light leaf containing only dots (no trivalent vertices allowed).

Basis in type \widetilde{A}_2 (outside the walls)



Theorem (Libedinsky-P. '20)

A basis of IH_y (y out of the walls, y spherical) is given by the following type of light leaves.

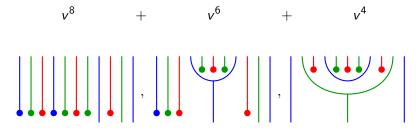


A visualization for KL polynomials

The basis that we produced give also a nice visualization of KL polynomials.

Example

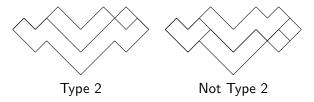
We have $h_{tustusutsut,tut}(v) =$



Thanks for your attention!

Dyck partitions of Type 2

A Dyck partition P is said of **type 2** if: for any strip D that contains a box just below, SW or SE o a box in a strip C, then every box just below, SW or SE a box in Cbelongs either to D or C.



Remark

Between any two paths λ, μ there exists **at most one** Dyck partition of type 2.

Inverse KL polynomials

Inverse KL polynomials are related to the ordinary KL polynomials by the **inversion formula**:

$$\sum_{\mu} (-1)^{\ell(\mu)-\ell(\nu)} h_{\lambda,\mu}(\nu) g_{\mu,\nu}(\nu) = \delta_{\lambda,\nu}$$

Theorem (Brenti '02)

Dyck partitions of Type 2 describe inverse KL polynomials

$$\sum_{\substack{\mathsf{P} \text{ of type } 2\\ \text{between } \lambda \text{ and } \mu}} v^{|\mathsf{P}|} = g_{\lambda,\mu}(v)$$

Singular Rouquier Complexes

We can construct a complex of singular Soergel bimodules E_{μ} :

$$0 \rightarrow \bigoplus_{\lambda \in \Lambda_{i}} IH_{\lambda}(-i) \rightarrow \ldots \rightarrow \bigoplus_{\lambda \in \Lambda_{1}} IH_{\lambda}(-1) \rightarrow IH_{\mu} \rightarrow 0$$

which is **exact** everywhere but in the term IH_{μ} .

Singular Rouquier Complexes

We can construct a complex of singular Soergel bimodules E_{μ} :

$$0 \rightarrow \bigoplus_{\lambda \in \Lambda_{i}} IH_{\lambda}(-i) \rightarrow \ldots \rightarrow \bigoplus_{\lambda \in \Lambda_{1}} IH_{\lambda}(-1) \rightarrow IH_{\mu} \rightarrow 0$$

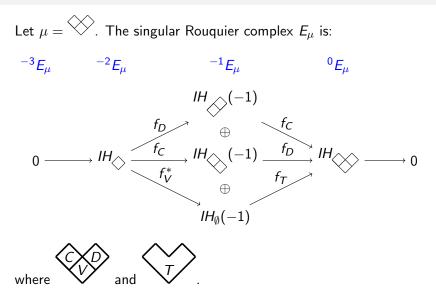
which is **exact** everywhere but in the term IH_{μ} .

Here
$$\Lambda_i = \left\{ \mu \leq \lambda \mid \begin{array}{c} \text{exists Dyck partition P} \\ \text{of type 2 between } \lambda \text{ and } \mu \text{ with } |\mathsf{P}| = i \end{array} \right\}.$$

 $\mathit{IH}_{\lambda}(-i)$ occurs in $\mathit{E}_{\mu} \quad \Longleftrightarrow \quad \mathit{g}_{\lambda,\mu}(v) = v^i$

 E_{μ} is called **singular Rouquier complex**.

Example of a singular Rouquier complex



Example of a singular Rouquier complex

